

Perspectives on Free and Open Source Software

Perspectives on Free and Open Source Software

The MIT Press

Cambridge, Massachusetts

London, England

edited by
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani

© 2005 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any

electronic or mechanical means (including photocopying, recording, or information

storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales

promotional use. For information, please e-mail special_sales@mitpress.mit.edu or

write to Special Sales Department, The MIT Press, 5 Cambridge Center, Cambridge,

MA 02142.

This book was set in Stone sans and Stone serif by SNP Best-set Typesetter Ltd.,

Hong Kong. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Perspectives on free and open source software / edited by Joseph Feller . . . [et al.].

p. cm.

Includes bibliographical references and index.

ISBN 0-262-06246-1 (alk. paper)

1. Shareware (Computer software) 2. Open source software. 3. Computer

software—Development. I. Feller, Joseph, 1972–

QA76.76.S46P47 2005

005.36—dc22

2004064954

10 9 8 7 6 5 4 3 2 1

My love, thanks and humble apologies go to my very patient and
supportive family: Carol, Caelen, Damien, and Dylan.
JF

Arís as Gaeilge: Buíochas mór le mo chlann, Máire, Pól agus Eimear. Is mór
agam an iarracht a rinne sibh ar mo shon.
BF

With heartfelt warmth, I dedicate this book to my wife, Jacqueline, and
my two sons, Derek and Zachery, who bring meaning to everything I do.
SAH

To Shaheen, Doulat, and Sitarah, your love makes it all possible.
A special note of thanks to Eric von Hippel for being a great mentor and
a true chum.
KRL

Contents

Foreword by Michael Cusumano xi
Acknowledgments xv
Introduction xvii
by Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim R. Lakhani

I Motivation in Free/Open Source Software Development 1

1 Why Hackers Do What They Do: Understanding Motivation and
Effort in Free/Open Source Software Projects 3
Karim R. Lakhani and Robert G. Wolf

2 Understanding Free Software Developers: Findings from the FLOSS
Study 23
Rishab Aiyer Ghosh

3 Economic Perspectives on Open Source 47
Josh Lerner and Jean Tirole

II The Evaluation of Free/Open Source Software Development 79

4 Standing in Front of the Open Source Steamroller 81
Robert L. Glass

5 Has Open Source Software a Future? 93
Brian Fitzgerald

6 Open Source Software Development: Future or Fad? 107
Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

7 Attaining Robust Open Source Software 123
Peter G. Neumann

8 Open and Closed Systems Are Equivalent (That Is, in an Ideal
World) 127
Ross Anderson

9 Making Lightning Strike Twice 143
Charles B. Weinstock and Scott A. Hissam

III Free/Open Source Processes and Tools 161

10 Two Case Studies of Open Source Software Development: Apache
and Mozilla 163
Audris Mockus, Roy T. Fielding, and James D. Herbsleb

11 Software Engineering Practices in the GNOME Project 211
Daniel M. German

12 Incremental and Decentralized Integration in FreeBSD 227
Niels Jørgensen

13 Adopting Open Source Software Engineering (OSSE) Practices by
Adopting OSSE Tools 245
Jason Robbins

IV Free/Open Source Software Economic and Business Models 265

14 Open Source Software Projects as “User Innovation Networks” 267
Eric von Hippel

15 An Analysis of Open Source Business Models 279
Sandeep Krishnamurthy

16 The Allocation of Software Development Resources in Open Source
Production Mode 297
Jean-Michel Dalle and Paul A. David

17 Shared Source: The Microsoft Perspective
Jason Matusow

V Law, Community, and Society

18 Open Code and Open Societies
Lawrence Lessig

19 Legal Aspects of Free and Open Source Software 361
David McGowan

viii Contents

329

347

349

20 Nonprofit Foundations and Their Role in Community-Firm Software
Collaboration 393
Siobhan O’Mahony

21 Free Science 415
Christopher Kelty

22 High Noon at OS Corral: Duels and Shoot-Outs in Open Source
Discourse 431
Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

23 Libre Software Policies at the European Level 447
Phillipe Aigrain

24 The Open Source Paradigm Shift 461
Tim O’Reilly

Epilogue: Open Source outside the Domain of Software 483
Clay Shirky

References 489
List of Contributors 513
Index 525

Contents ix

Foreword

As with other researchers and authors who study the software business
and software engineering, I have had many opportunities to learn about
free and open source software (FOSS). There is a lot to know, and I am
especially pleased to see this volume of essays from MIT Press because
it provides so much information—both quantitative and qualitative—
on so many aspects of the open source movement. It will answer many
questions as well as continue to inspire more research for years to
come.

The research in this book is authoritative and thoughtful and offers
something for everyone. For example, economists will want to know the
motivations of people and companies (such as IBM or Hewlett Packard),
who give freely of their time to create or improve a “public good.” Not sur-
prisingly, the research indicates that many FOSS developers are motivated
both by the creative challenge as well as self-interest, such as enhancing
their reputations as programmers, and then take advantage of this effect
when searching for jobs. Because both for-profit and nonprofit organiza-
tions pay many programmers to work on open source projects, we find
there is also some overlap between the free and open source and com-
mercial software worlds.

Management specialists will want to know if there are business models
that enable for-profit firms to take advantage of free or open source soft-
ware. We learn that there are several seemingly viable commercial oppor-
tunities, even though open source, in many ways, is the ultimate
commoditization of at least some parts of the software products business.
The major business opportunities seem to be the hybrid approaches that
make money from selling services (such as for system installation and inte-
gration, and technical support) and distributing convenient packages that
include both free and open source software as well as some commercial
utilities or applications. This is the strategy that Red Hat, the poster child

of commercial OSS companies, has followed, and it is finally making
money as a distributor and by servicing Linux users.

Social scientists are fascinated by the coordination mechanisms used in
open source projects and will learn a lot about how the process works.
Computer scientists and software engineers, as well as IT managers, will
want to know if open source development methods produce better soft-
ware than proprietary methods produce. Most of the evidence in this book
suggests that the open source methods and tools resemble what we see in
the commercial sector and do not themselves result in higher quality. There
is good, bad, and average code in all software products. Not all open source
programmers write neat, elegant interfaces and modules, and then care-
fully test as well as document their code. Moreover, how many “eyeballs”
actually view an average piece of open source code? Not as many as Eric
Raymond would have us believe!

After reading the diverse chapters in this book, I remain fascinated but
still skeptical about how important open source actually will be in the long
run and whether, as a movement, it is raising unwarranted excitement
among users as well as entrepreneurs and investors. On the development
side, I can sympathize with the frustration of programmers such as Richard
Stallman, Linus Torvalds, or Eric Raymond in not being able to improve
commercial software and thus determining to write better code that is free
and available. Eric Raymond has famously described the open source style
of development as similar to a “bazaar,” in contrast to top-down, hierar-
chical design philosophies similar to how the Europeans built cathedrals
in the middle ages.

We also know from the history of the mainframe industry, UNIX, and
government-sponsored projects that much software has been a free “public
good” since the 1950s and that open source-like collaboration has led to
many innovations and improvements in software products. But, on the
business side, most companies operate to make money and need some
guarantee that they can make a return on investment by protecting their
intellectual property. To suggest that all software should be free and freely
available makes no sense. On the other hand, most software requires an
iterative style of development, and at least some software is well suited to
being written by programmers for other programmers in an open source
mode. Increasing numbers of the rest of us can take advantage of this
public good when “programmer products” like Linux, Apache, and Send
Mail become more widely used or easier to use.

The conclusion I reach from reading this book is that the software world
is diverse as well as fascinating in its contrasts. Most likely, software users

xii Foreword

will continue to see a comingling of free, open source, and proprietary soft-
ware products for as far as the eye can see. Open source will force some
software products companies to drop their prices or drop out of commer-
cial viability, but other products and companies will appear. The business
of selling software products will live on, along with free and open source
programs. This is most likely how it will be, and it is how it should be.

Michael Cusumano
Groton and Cambridge, Massachusetts
February 2005

Foreword xiii

Acknowledgments

We would like to express our sincere thanks to Bob Prior and to the whole
editorial staff at The MIT Press, for their professionalism and support
throughout the process. We would also like to express our appreciation to
the many contributors in this volume. This work would not have been pos-
sible without their passion for scholarship and research.

Special thanks to Lorraine Morgan and Carol Ryan for their help with
preparing the manuscript.

Most of all, we are grateful to the individuals, communities, and firms
that constitute the free and open source software movements. Their inno-
vations have challenged our “common knowledge” of software engineer-
ing, of organizations and organizing, of the software industry, and of
software as a component of contemporary society.

JF, BF, SAH, and KRL

Introduction

Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim R. Lakhani

What This Book Is About

Briefly stated, the terms “free software” and “open source software” refer
to software products distributed under terms that allow users to:

� Use the software
� Modify the software
� Redistribute the software

in any manner they see fit, without requiring that they pay the author(s)
of the software a royalty or fee for engaging in the listed activities. In
general, such terms of distribution also protect what the publishing world
calls the “moral right” of the software’s author(s) to be identified as such.
Products such as the GNU/Linux operating system, the Apache Web server,
the Mozilla Web browser, the PHP programming language, and the
OpenOffice productivity suite are all well-known examples of this kind of
software.

More detailed, formal definitions for the terms free and open source are
maintained—and vigilantly watch-dogged—by the Free Software Founda-
tion (FSF)1 and Open Source Initiative (OSI).2 However, the definitions are
substantively identical, and the decision to use one of these terms rather
than the other is generally ideological, rather than functional; the FSF
prefers the use of a term that explicitly refers to freedom, while the OSI
believes that the dual meaning of the English word “free” (gratis or liber-
tas) is confusing, and instead prefers the emphasis on the availability and
modifiability of source code.3 In Europe the French-English construct libre
software has been widely adopted to unambiguously capture the connota-
tion intended by the FSF.4

Free and open source software (F/OSS), however, is more than a set of
terms of distribution. F/OSS is also—or, perhaps, primarily—a collection of

tools and processes with which people create, exchange, and exploit
software and knowledge in a manner which has been repeatedly called
“revolutionary.”

Revolutions are a lot like caterpillars—they don’t grow old. Either they
die young, or they undergo metamorphosis into something quite differ-
ent. Successful caterpillars become butterflies and successful revolutions
replace, or at least transform, the status quo. What is the status of the F/OSS
revolution? Has it successfully transformed the software industry? Other
industries? Governments and societies? Or, is the revolution still in
“chrysalis,” with the great change to come tomorrow? Or, has the revolu-
tion already died young? Or is it, perhaps, doomed to do so?

In the broadest sense, this book was written to address these questions.

Perspectives on Free and Open Source Software

“In the broadest sense” won’t get you very far, though, so we’ll be a bit
more precise. The earliest research and analysis on F/OSS emerged from
within:

� The F/OSS community itself (including the writings of Richard M.
Stallman and Eric S. Raymond)
� The technology press (for example Wired magazine, O’Reilly and Associates)
� The software engineering research community (for example the ACM and
IEEE)

It didn’t take long, however, for a substantial and well-rounded literature
to emerge—one addressing F/OSS as not only a software engineering phe-
nomenon, but as psychological, philosophical, social, cultural, political,
economic, and managerial phenomena as well. The bibliography of this
book5 is testament to the variety and richness of this scholarship.

We wanted this book to bring together, under one roof, provocative
and exemplary research and thinking from people within a number of
different academic disciplines and industrial contexts. Specifically, we’ve
gathered together work from many of the leading F/OSS researchers
and analysts and organized them into five key “perspectives” on the topic.
These parts are:

Part I. Motivation in Free/Open Source Software Development
Part II. The Evaluation of Free/Open Source Software Development
Part III. Free/Open Source Software Processes and Tools
Part IV. Free/Open Source Software Economic and Business Models
Part V. Law, Community and Society

xviii Introduction

Introduction xix

Next, we describe each of these parts, offering short summaries of the chap-
ters and suggesting key questions that the reader might bear in mind.

Part I: Motivation in Free/Open Source Software Development

Many first-time observers of the F/OSS phenomenon are startled by the
simple fact that large numbers of highly skilled software developers (and
users) dedicate tremendous amounts of time and effort to the creation,
expansion, and ongoing maintenance of “free” products and services. This
seemingly irrational behavior has captured the attention of reflective F/OSS
community participants and observers.

The three chapters in Part I seek to better describe and understand the
motivations of individuals who participate in F/OSS activities.

Lakhani and Wolf (chapter 1) report that the largest and most signifi-
cant determinant of effort (hours/week) expended on a project was an
individual sense of creativity felt by the developer. They surveyed 684
developers in 287 F/OSS projects on SourceForge.net and found that more
than 60 percent rated their participation in the projects as the most (or
equivalent to the most) creative experience in their lives. Respondents
expressed a diverse range of motivations to participate, with 58 percent of
them noting user need for software (work and non-work-related) as being
important. Intellectual stimulation while coding (having fun), improving
programming skills, and an ideological belief that software should be
free/open were also important reasons for participating in a F/OSS project.
The authors’ analysis of the data shows four distinct clusters (approxi-
mately equal in size) of response types:

1. Those that expressed enjoyment and learning as primary motivators
2. Those that simply need the code to satisfy non-work-related user needs
3. Those that have work-related needs and career concerns
4. Those that feel an obligation to the community and believe that soft-
ware should be free/open

These findings indicate an inherent source of strength within the F/OSS
community. By allowing individuals with multiple motivation types to
coexist and collaborate, the F/OSS community can and does attract a wide
range of participants. Individuals can join for their own idiosyncratic
reasons, and the F/OSS community does not have to be overly concerned
about matching motivations to incentives.

Ghosh (chapter 2) presents a study conducted for the European Union
of more than 2,700 F/OSS developers, and reports that more than 53

percent of the respondents indicated “social” motivations to join and con-
tinue in the community. The single most important motivation was “to
learn and develop new skills.” About 31 percent of the respondents noted
career and monetary concerns, 13 percent indicated political motivations,
and 3 percent had product requirements. Contrary to many altruism-based
explanations of participation, Ghosh reports that 55 percent of respon-
dents note “selfish” reasons to participate; that is, they state that they
take in more than they contribute. Interestingly, he finds no difference
in participation levels in projects between those that are motivated
by social concerns and those that are motivated by career/monetary
concerns.

Ghosh’s study also showed that a majority of the developers are male,
and that more than 60 percent are under age 26. Surprisingly (given the
nerdish stereotypes prevalent in the mainstream view of F/OSS develop-
ers), more than 58 percent of the developers indicated having “significant
other” partners with a large fraction (40 percent) living with their partners.
About 17 percent of the respondents also indicated having at least one
child.

Finally, chapter 3 presents a modified version of Lerner and Tirole’s 2002
Journal of Industrial Economics paper, “Some Simple Economics of Open
Source,” one of the most widely cited papers in the F/OSS research litera-
ture. Lerner and Tirole employ a simple economic rationale of cost and
benefit in explaining why developers choose to participate in F/OSS pro-
jects. As long as benefits exceed costs, it makes rational economic sense for
a developer to participate in a project. Costs to the developers are defined
mainly as opportunity costs in time and effort spent participating in cre-
ating a product where they do not get a direct monetary reward for their
participation. Additional costs are also borne by organizations where these
developers work if they are contributing to F/OSS projects during work
hours.

Lerner and Tirole propose that the net benefit of participation consists
of immediate and delayed payoffs. Immediate payoffs for F/OSS participa-
tion can include meeting user needs for particular software (where work-
ing on the project actually improves performance) and the enjoyment
obtained by working on a “cool” project. Delayed benefits to participation
include career advancement and ego gratification. Participants are able to
indicate to potential employers their superior programming skills and
talents by contributing code to projects where their performance can be
monitored by any interested observer. Developers may also care about their
reputation within the software community, and thus contribute code to

xx Introduction

earn respect. In either case, delayed payoffs are a type of signaling incen-
tive for potential and actual contributors to F/OSS projects.

Part II: The Evaluation of Free/Open Source Software Development

Part I asked “Why do they do it?”; Part II asks “Was it worth it?” In this
section, we seek to address a wide range of issues related to evaluating the
quality—security, reliability, maintainability, and so on—of both the F/OSS
process and its products. Both pro- and anti-F/OSS rhetoric has too often
been characterized by grandstanding and FUD6 flinging. We are confident,
then, that the chapters in this section meet some very real needs in both
the academic and practitioner communities for objective, empirically
grounded assessment.

Glass takes up this theme (the need for objectivity and sobriety) in
chapter 4. He positions himself (with great ease and familiarity, it would
seem) in front of what he calls the “steamroller” of unexamined hype.
Glass raises a wide range of claims about F/OSS, regarding the talent of
F/OSS community members, the security and reliability of the software,
the sustainability of F/OSS economic and business models, amongst other
issues. It is a provocative chapter, and we began Part II with it knowing it
would wake you up and sharpen your wits. While you might not agree
with all of Glass’s arguments, his one overarching claim is irrefutable: if
we are to understand and benefit from the F/OSS phenomenon, we cannot
do so without robust research and hard evidence.

Fitzgerald (chapter 5), while not quite in front of the steamroller, is at
least on the construction site. Drawing on a wide range of research and
F/OSS writings, Fitzgerald articulates a number of what he calls “problem-
atic issues,” arising from software engineering, business, and sociocultural
perspectives. These issues include the scarcity of developer talent (ques-
tions of motivation aside), the potentially negative effects of the modu-
larity that characterizes many F/OSS products, the problems with “porting”
the F/OSS process into sector-knowledge-intensive vertical software
domains, and the churn caused by changing project (or even movement)
leadership.

Rusovan, Lawford, and Parnas (chapter 6) change our tack slightly,
moving away from the broader and more discursive tone of chapters 4 and
5. Instead, they focus on a single, concrete example, the findings from
applying experimental software inspection techniques (Parnas 1994b) to a
particular part of the TCP/IP implementation in GNU/Linux. Although
they caution against resting an evaluation of the F/OSS process on a single

Introduction xxi

investigation, they do assert that the Linux ARP code was revealed to be
“poorly documented,” the interfaces “complex,” and the module need-
lessly reliant on “what should be internal details of other modules.” Their
study points importantly to the need for elegant design and effective doc-
umentation in all software, even in the wilds of the “bazaar.”

Neumann (chapter 7) in many ways echoes the implied challenges of
the previous chapter—arguing that F/OSS is not inherently “better” than
proprietary software, but that it has the potential to be. He points to, and
briefly summarizes, the dialog that emerged from the 2000 IEEE Sympo-
sium on Security and Privacy, and concludes that F/OSS presents us with
the opportunity to learn from mistakes which we should have learned from
years ago.

Anderson (chapter 8) elaborates considerably on the issues raised by
Neumann. Anderson walks the reader through the logic and formulae
which demonstrate that releasing a system as F/OSS (thus opening the
source code to public scrutiny) enables an attacker to discover vulnerabil-
ities more quickly, but it helps the defenders exactly as much. He goes on
to elaborate on the various, specific situations that may cause a break in
the potential symmetry between proprietary and F/OSS products. The
balance “can be pushed one way or another by many things,” he argues,
and it is in these practical deviations from the ideal that “the interesting
questions lie.”

Finally, Weinstock and Hissam (chapter 9) address a wide range of per-
ceptions and “myths” related to the F/OSS phenomenon, and present data
gathered in five case studies: the AllCommerce Web store in a box, the
Apache HTTP server, the Enhydra application server, NAIS (a NASA-
operated Web site that switched from Oracle to MySQL), and Teardrop (a
successful Internet attack affecting both F/OSS and proprietary systems).
They conclude that F/OSS is a viable source of components from which to
build systems, but such components should not be chosen over other
sources simply because the software is free/open source. They caution
adopters not to embrace F/OSS blindly, but to carefully measure the real
costs and benefits involved.

Part III: Free/Open Source Software Processes and Tools

Software engineering (SE) is a very young field of study. The first computer
science department (in the United States) was established in just 1962
(Rice and Rosen 2002) and it wasn’t until after a NATO conference on the
“software crisis” in 1968 that the term “software engineering” came into

xxii Introduction

Introduction xxiii

common use (Naur and Randall 1969; Bauer 1972), and the first degree
program for software engineers in the United States wasn’t established
until 1978 at Texas Christian University.

Software engineering is more than just “coding,” it is applying “a sys-
tematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software” (IEEE 1990); it is also the engineering of
software to meet some goal, and to see that the constructed software
operates over time and that it is maintained during its expected life.7

Such definitions of software engineering have led the way to a plethora
of processes, paradigms, techniques, and methodologies, all with the goal
of helping to make the process of engineering correct software repeatable
and addressing the concerns raised at the 1968 NATO conference on the
“software crisis,” where it was recognized that software was routinely late,
over budget, and simply wrong. To enumerate a list of such processes,
paradigms, techniques, and methodologies here would be too arduous,
but for the most part it, is generally accepted that the construction or
engineering of software involves:

� Need
� Craftsman
� Compensation

In other words, some individual or group in need of software obtains that
software product from a programmer or group for some amount of compen-
sation. This is nothing more, really, than the law of supply and demand,
which has been tested throughout human civilization. Following such law,
if there is no “need,” then there is no one to compensate the craftsman
for their product, and hence no product. As such, nearly all defined
processes for software engineering include some role for the end-user or
defining-user in a software engineering process (such as requirements
engineering (IEEE 1990) or “use cases” and “actors” in the Rational Unified
Process (Jacobson, Booch, and Rumbaugh 1999)). Further, software engi-
neering is concerned with the principles behind effectively organizing
the team of engineers that craft the software, and also with how that crafts-
manship is accomplished, in relation to:

� Designing the software (its architecture, modules, and interactions)
� Programming, or coding, the designed software
� Testing the software against design and need
� Documenting that which is designed, programmed, and tested
� Managing those that design, program, test, and document

Through the short history of rationalizing the process by which software
engineering is, or should be, accomplished, the members of the SE com-
munity have reached a fairly common understanding of what software
engineering is, and how software engineering should be done. It is the
apparent departure of free and open source software (F/OSS) from this
understanding (or belief in that understanding), combined with the
success (or perceived success) of many F/OSS projects, that has attracted
the attention of many in the research community. In this section, a
number of authors have been selected to bring to the foreground specific
observations from various F/OSS projects.

Mockus, Fielding, and Herbsleb (chapter 10) embarked on an empirical
study by examining data from two major F/OSS projects (the Apache HTTP
server and Mozilla) to investigate the capacity of F/OSS development prac-
tices to compete and/or displace traditional commercial development
methods.8 German (chapter 11) proposes that the actual design of the soft-
ware (its architecture) is one organizing principle behind the success of the
GNOME project, in that it supports open and distributed software engi-
neering practices to be employed by a large number of geographically dis-
persed code contributors. German then corroborates those practices with
empirical evidence from the records available for the project to measure
the efficacy of those practices.

Following this, Jørgensen (chapter 12) traces the development cycle of
releases of the FreeBSD operating system and presents the results of a
survey of FreeBSD software developers, which was conducted to under-
stand the advantages and disadvantages of the software engineering prac-
tices used by FreeBSD. The conclusions gleaned from his observations
interestingly suggest that a strong project leader is not necessarily needed
for a F/OSS project (such as FreeBSD) to be successful, although he pro-
poses instead that a well-defined software engineering process is, perhaps,
critical.

Finally, Robbins (chapter 13) looks at the common practices used in
F/OSS software development projects and at the tools available to support
many aspects of the software engineering process. He also points out where
the F/OSS community is lacking in tool support for other software engi-
neering processes.

Part IV: Free/Open Source Software Economic and Business Models

Previously, we noted that F/OSS seems to challenge many accepted soft-
ware engineering norms. It also appears to depart wildly from established

xxiv Introduction

software business models, and indeed F/OSS companies, and hybrid
proprietary-F/OSS companies have had to create new value offers pre-
dicated on software as a service, value of software use rather than value of
software purchase, and so on. In this part, we present four chapters exam-
ining these new models and the changing relationships between customers
and companies, and between companies and competitors.

In chapter 14, von Hippel argues that F/OSS offers extraordinary exam-
ples of the power of user innovation, independent of any manufacturing
firm. He contends that markets characterized by user innovation “have a
great advantage over the manufacturer-centered innovation development
systems that have been the mainstay of commerce for hundreds of years”
and discusses, convincingly, the parallels between the F/OSS communities
and sporting communities also characterized by user innovation.

Krishnamurthy (chapter 15) discusses a series of business models that
have emerged in relationship to F/OSS. He articulates the relationships that
exist between producers, distributors, third parties, and consumers, and
examines the impact of different licensing structures on these relation-
ships. In chapter 16, Dalle and David present a simulation structure used
to describe the decentralized, microlevel decisions that allocate program-
ming resources both within and among F/OSS projects. They comment on
the impact of reputation and community norms, and on the economic
rationale for “early release” policies.

Finally, Matusow (chapter 17) presents the perspective of what has
always been the archetypal proprietary software company in the eye of the
F/OSS community; namely, Microsoft. In discussing the Shared Source
program and related initiatives, this chapter provides interesting insights
into the impact that F/OSS has had on the proprietary software industry
and, perhaps, vice versa.

Part V: Law, Community, and Society

It has been said that the average Navajo Indian family in 1950s America
consisted of a father, mother, two children, and three anthropologists.
Many in the F/OSS community no doubt are starting to feel the same way,
as what began as a software topic has attracted the efforts of so many
researchers from sociology, economics, management, psychology, public
policy, law, and many others. The final section of the book presents
research focused on legal, cultural and social issues.

Lessig (chapter 189) paints a broad picture and challenges us to think
about the social implications of F/OSS and the drivers behind the

Introduction xxv

phenomenon. Starting with the collapse of the Berlin Wall, he considers
the move from closed to open societies. He discusses the U.S. model, where
the move to having more property that is “perfectly protected” is equated
with progress. For Lessig, the issue is not whether the F/OSS development
model produces more reliable and efficient software; rather it is about the
future of an open society drawing on F/OSS principles. Lessig focuses on
the enabling power of combining a “commons” phenomenon with the
concept of “property” to stimulate creativity, and also the critical differ-
ences between ideas and “real” things. Lessig also identifies the specific
threats to ideas posed in cyberspace, a space that is not inherently and per-
petually free but can be captured and controlled. Lessig offers a number of
compelling examples of double standards where large corporate U.S. inter-
ests use the power of copyright law to prevent free communication of ideas,
whereas they would presumably decry such curtailments on free commu-
nication if they occurred in other parts of the world.

As Niels Bohr once remarked about quantum physics, if it doesn’t make
you dizzy, then you don’t understand it, and the same may hold true for
F/OSS licenses. McGowan (chapter 19) deconstructs the legal issues sur-
rounding F/OSS licensing. He presents a primer the structure of F/OSS
licenses (“how they are designed to work”) and a discussion on copyright,
“copyleft,” contract law, and other issues that affect the enforceability of
licenses (“whether the licenses actually will work this way if tested”). His
discussion of the Cyber Patrol hack and the Duke Nukem examples make
these complex issues very concrete and accessible.

Moving from licensing to liability, O’Mahony (chapter 20) addresses the
fact that as F/OSS moves more into the mainstream, the incorporation of
projects as a mechanism to dilute the threat of individual legal liability
becomes central. However, incorporation brings its own set of problems,
in that it imposes a degree of bureaucracy that is anathema to the hacker
spirit of F/OSS. O’Mahony deals directly with this conflict, an issue exac-
erbated by the many F/OSS developers operating on a voluntary basis with
nonstandard systems of rewards and sanctions. O’Mahony identifies a
number of dilemmas that have emerged as F/OSS has become more popular
and the original hacker ethos and values diluted. She discusses the differ-
ent incorporation models that have emerged historically and considers
why they are inappropriate as organizational models for F/OSS projects.
She then compares the foundations created by the Debian, Apache,
GNOME, and the Linux Standards Base projects to study how different
project “ecologies” approached the task of building a foundation at dif-
ferent points in time.

xxvi Introduction

In chapter 21, Kelty elaborates on the oft-noted parallels between F/OSS
and the scientific enterprise. He considers the extent to which they are
similar, and also the extent to which F/OSS has (or will) become a neces-
sary enabler of science. He focuses in particular on the social constitution
of science—the doing of science, the funding of science, and the valu-
ing of science—and draws parallels between the norms, practices, and arti-
facts of science and F/OSS. The chapter also considers issues related to law,
thus resonating with McGowan’s chapter earlier in this section. Likewise,
his consideration of the threats facing science (and thus society) are rem-
iniscent of those identified by Lessig.

The chapter by Szczepanska, Bergquist, and Ljungberg (22) illustrates the
manner in which researchers can apply an ethnographic perspective to the
study of F/OSS. They characterize open source as a social movement, and
trace its origins in the literature on the emergence of the network society.
They situate F/OSS as a countermovement in opposition to the mainstream
IT culture as exemplified by companies such as IBM and Microsoft. Thus,
their analysis resonates with the motivation factors identified earlier in the
book. The authors use discourse analysis to analyze how the OSS commu-
nity is molded and to help understand how collective identity is created
and communicated. Understanding these discursive practices is especially
important because of the decentralized and networked character of the OSS
movement. The construction of the hacker is discussed, and the tensions
between the Free Software and Open Source movements are analyzed. They
further analyze “us” versus “them” constructions in the discourse of the
community, and the discursive strategies of the anti-OSS constituencies.
Interestingly, the rhetoric of the “American Way” is used by both pro- and
anti-F/OSS communities to support their arguments. Finally, the authors
consider the power relationships implied by a gift culture, and how these
structure the work patterns of the F/OSS community.

Aigrain (chapter 23) who has written much on F/OSS, has drawn on his
many years of experience with the European Commission to analyze their
policy in relation to F/OSS. (He uses the term libre software.) The F/OSS phe-
nomenon is arguably better supported by public bodies in Europe than in
the United States, and European Commission support for F/OSS represents
a very significant factor in the future success of F/OSS initiatives. Aigrain’s
analysis identifies choke-points in the EU funding bureaucracy that will
deter many F/OSS practitioners, as well as important policy issues of which
potential F/OSS researchers in Europe need to be cognizant. Aigrain
suggests that, until recently, there was limited awareness of F/OSS issues

Introduction xxvii

xxviii Introduction

in the Commission, but that the growing disenchantment with the
dissemination and exploitation of software research funded under the tra-
ditional proprietary closed model was an important motivating factor. He
also identifies as an important motivator the desire to establish an infor-
mation society based on the open creation and exchange of information
and knowledge. Other drivers include concerns about security, privacy, and
overreliance on a small number of monopoly suppliers of proprietary soft-
ware. Aigrain also acknowledges the prompting by advocacy groups such
as the Free Software Foundation Europe (FSFE). He insightfully notes need
for sensitive support for the F/OSS hacker community in managing the
statutory reporting requirements of a funding agency such as the EU.
Despite this pragmatism, over the 1999–2002 period, only seven F/OSS pro-
jects were approved, with a total budget of €5 million, representing only
0.16 percent of the overall EU IST program funding for research. Aigrain
also identifies some challenges for libre software, specifically in the areas
of physical computing and network infrastructure, the logical software
layer, and information and contents layer.

Finally, in chapter 24, O’Reilly presents a thoughtful and informed essay
on F/OSS “as an expression of three deep, long-term trends”; namely,
the “commoditization of software,” “network-enabled collaboration,” and
“software customizability (software as a service).” He argues that it is by
examining next-generation applications (the killer apps of the Internet,
like Google) that “we can begin to understand the true long-term signifi-
cance of the open source paradigm shift.” More to the point, O’Reilly
asserts that if we are to benefit from “the revolution,” our understanding
must penetrate the “foreground elements of the free and open source
movements” and instead focus on its causes and consequences.

Rigor and Relevance

We believe that academic research should be both scientifically rigorous
and also highly relevant to real-life concerns. We also believe that good
research answers questions, but great research creates new questions. Thus
we conclude this introduction with some suggested questions for you to
keep in mind as you read the book. We’ve grouped the question into three
audience-specific lists for F/OSS project leaders and developers, managers
and business professionals, and researchers and analysts. We suspect most
of our readers, like most of our authors, wear more than one of these
hats.

Introduction xxix

F/OSS Project Leaders and Developers

� What are the major motivations for the developers in your project?
� Is your project culture such that it can accommodate developers with dif-
ferent motivations to participate? Or does your project risk crowding out
developers by having a culture that supports only a single motivation to
participate?
� How can you manage both paid and volunteer contributors?
� On what basis do you welcome new members and how can you integrate
them into your community?
� How can you best manage the “economy of talent” within your project?
How can you settle disagreements and disputes? How can you avoid
(destructive) churn?
� How can you manage software complexity? Integration? Testing?
� How can you break the “security symmetry” created by F/OSS?
� How are communication and collaboration facilitated in your project?
� How are changes from the F/OSS community accommodated?
� Can you automate day-to-day activities? What tools do you need to use?
� How can you leverage user innovation? How do you enable your users
to contribute to the project?
� Is your project part of a commercial business model/value web? Where
does your project fit in?

Managers and Business Professionals

� How can nonfinancial incentives be utilized within your firm’s software
projects to motivate internal developers?
� How can you spark the essence of creativity among your software
developers?
� How do you build an open community of sharing and peer review within
your firm?
� How does your firm interact with the wider F/OSS community? What
things do you need to be aware of so that you do not drive out F/OSS
developers?
� How do you leverage the increasing numbers of F/OSS developers for the
benefit of your firm?
� What criteria are important in your evaluation of F/OSS products? How
does your procurement process need to change to adjust to F/OSS?
� How do your implementation and change management processes need
to change to adjust to F/OSS?

xxx Introduction

� In what way do your existing processes (or tools) have to adapt to support
F/OSS development?
� What criteria do you need to choose a F/OSS license? Or, if you are
attempting to emulate the F/OSS process without using F/OSS licensing
structures, what challenges do you anticipate?
� What can your firm learn about collaboration and agility from F/OSS
project organizations? What can they learn from you? (Remember, you can
contribute knowledge, not just code, to the F/OSS community.)
� What business model(s) is your firm engaged in? What role do F/OSS
products play in your value offer? F/OSS processes? F/OSS communities?
� How can F/OSS play a role in your firm’s “corporate citizenship”?

Researchers and Analysts

� Does the F/OSS phenomenon shed new light on how creativity works in
knowledge workers?
� What is it about programming that evokes a creativity response in soft-
ware developers? Can this be achieved in nonsoftware environments?
� What are noneconomic incentives to innovate in complex product
industries?
� How portable are F/OSS motivations and practices to other domains of
economic activity and social organizations?
� How can F/OSS processes be utilized in proprietary settings, and vice
versa?
� How can F/OSS tools be utilized in proprietary settings, and vice versa?
� What are the weakness of the F/OSS process and toolkit? How can these
be addressed?
� What are the strengths of the F/OSS process and toolkit? How can these
be leveraged?
� Do the dynamics of F/OSS create new opportunities for research (new
methods for data gathering and analysis)? If so, what are the ethics involved?
� Does the F/OSS phenomenon force us to rethink the nature of
innovation?
� Does the F/OSS phenomenon force us to rethink the nature of work?
� Does the F/OSS phenomenon force us to rethink the nature of knowledge
sharing? Of intangible/intellectual assets?
� Is F/OSS overly reliant on a countercultural identity? How does “success”
change the F/OSS process?
� What are the relationships between F/OSS and other forms of creativity
and knowledge creation?

� Does F/OSS provide new modes of organizing and collaborating? What
are they?
� How does F/OSS actually help address the “digital divide” and the needs
of the information society?

Notes

1. http://www.gnu.org/philosophy/free-sw.html.

2. http://www.opensource.org/docs/definition.php.

3. See Feller and Fitzgerald (2002) for a fuller discussion of this. Several of the chap-

ters in this book also address the issue, directly or indirectly.

4. You’ll find all three terms (and every possible combination) used by the various

authors who wrote the chapters in this book—we let people choose their own labels,

rather than normalizing the book with unintentional side effects.

5. Most of the publicly available references in the bibliography of this book can be

found in multiple citation management formats (EndNote, Bibtex, and so on) at

http://opensource.ucc.ie. Additionally, full-text versions of many of the papers cited

are also available in the research repository at http://opensource.mit.edu. We hope

that these two resources will be very valuable to our readers.

6. Fear, Uncertainty, and Doubt.

7. Other definitions of software engineering include these same concepts, but go

on to include economic aspects (for example, “on time” and “on budget”) as well

as team management aspects (SEI 2003).

8. Chapter 10 is an edited reprint of Mockus, A., Fielding, R., and Herbsleb, J.D.

(2002), “Two Case Studies of Open Source Software Development: Apache and

Mozilla,” ACM Transactions on Software Engineering and Methodology, 11:3, pp.

309–346.

9. The contents of chapter 18 were originally presented by Lawrence Lessig as a

keynote address on “Free Software—a Model for Society?” on June 1, 2000, in

Tutzing, Germany.

Introduction xxxi

I Motivation in Free/Open Source Software Development

1 Why Hackers Do What They Do: Understanding

Motivation and Effort in Free/Open Source Software

Projects

Karim R. Lakhani and Robert G. Wolf

“What drives Free/Open Source software (F/OSS) developers to contribute
their time and effort to the creation of free software products?” is a ques-
tion often posed by software industry executives, managers, and academics
when they are trying to understand the relative success of the F/OSS move-
ment. Many are puzzled by what appears to be irrational and altruistic
behavior by movement participants: giving code away, revealing propri-
etary information, and helping strangers solve their technical problems.
Understanding the motivations of F/OSS developers is an important first
step in determining what is behind the success of the F/OSS development
model in particular, and other forms of distributed technological innova-
tion and development in general.

In this chapter, we report on the results of a continuing study of the
effort and motivations of individuals to contributing to the creation of
Free/Open Source software. We used a Web-based survey, administered to
684 software developers in 287 F/OSS projects, to learn what lies behind
the effort put into such projects. Academic theorizing on individual moti-
vations for participating in F/OSS projects has posited that external moti-
vational factors in the form of extrinsic benefits (e.g., better jobs, career
advancement) are the main drivers of effort. We find, in contrast, that
enjoyment-based intrinsic motivation—namely, how creative a person
feels when working on the project—is the strongest and most pervasive
driver. We also find that user need, intellectual stimulation derived from
writing code, and improving programming skills are top motivators for
project participation. A majority of our respondents are skilled and expe-
rienced professionals working in information technology–related jobs,
with approximately 40 percent being paid to participate in the F/OSS
project.

The chapter is organized as follows. We review the relevant literature
on motivations and then briefly describe our study design and sample

characteristics. We then report our findings on payment status and effort
in projects, creativity and motivations in projects, and the determinants
of effort in projects. We conclude with a discussion of our findings.

Understanding Motivations of F/OSS Developers

The literature on human motivations differentiates between those that are
intrinsic (the activity is valued for its own sake) and those that are extrin-
sic (providing indirect rewards for doing the task at hand) (Amabile 1996;
Deci and Ryan 1985; Frey 1997; Ryan and Deci 2000). In this section we
review the two different types of motivations and their application to
developers in F/OSS projects.

Intrinsic Motivation
Following Ryan and Deci (2000, 56), “Intrinsic motivation is defined as the
doing of an activity for its inherent satisfactions rather than for some sep-
arable consequence. When intrinsically motivated, a person is moved to
act for the fun or challenge entailed rather than because of external prods,
pressures, or rewards.”1 Central to the theory of intrinsic motivation is a
human need for competence and self-determination, which are directly
linked to the emotions of interest and enjoyment (Deci and Ryan 1985,
35). Intrinsic motivation can be separated into two distinct components:
enjoyment-based intrinsic motivation and obligation/community-based
intrinsic motivation (Lindenberg 2001). We consider each of them in the
following sections.

Enjoyment-based Intrinsic Motivation Having fun or enjoying oneself
when taking part in an activity is at the core of the idea of intrinsic moti-
vation (Deci and Ryan 1985). Csikszentmihalyi (1975) was one of the first
psychologists to study the enjoyment dimension. He emphasized that
some activities were pursued for the sake of the enjoyment derived from
doing them. He proposed a state of “flow,” in which enjoyment is maxi-
mized, characterized by intense and focused concentration; a merging of
action and awareness; confidence in one’s ability; and the enjoyment of
the activity itself regardless of the outcome (Nakamura and Csikszentmi-
halyi 2003). Flow states occur when a person’s skill matches the challenge
of a task. There is an optimal zone of activity in which flow is maximized.
A task that is beyond the skill of an individual provokes anxiety, and a task
that is below the person’s skill level induces boredom. Enjoyable activities
are found to provide feelings of “creative discovery, a challenge overcome

4 Karim R. Lakhani and Robert G. Wolf

and a difficulty resolved” (Csikszentmihalyi 1975, 181). Popular accounts
of programming in general and participation in F/OSS projects (Himanen
2001; Torvalds and Diamond 2001) in particular attest to the flow state
achieved by people engaged in writing software. Thus F/OSS participants
may be seeking flow states by selecting projects that match their skill levels
with task difficulty, a choice that might not be available in their regular
jobs.

Closely related to enjoyment-based intrinsic motivation is a sense of cre-
ativity in task accomplishment. Amabile (1996) has proposed that intrin-
sic motivation is a key determining factor in creativity. Amabile’s definition
of creativity consists of: (1) a task that is heuristic (no identifiable path to
a solution) instead of algorithmic (exact solutions are known), and (2) a
novel and appropriate (useful) response to the task at hand (Amabile 1996,
35). Creativity research has typically relied on normative or objective
assessments of creativity with a product or process output judged creative
by expert observers. Amabile (1996, 40), however, also allows for subjec-
tive, personal interpretations of creative acts. In particular, she proposes a
continuum of creative acts, from low-level to high-level, where individual
self-assessment can contribute to an understanding of the social factors
responsible for creative output. Thus in our case, a F/OSS project dedicated
to the development of a device driver for a computer operating system may
not be considered terribly creative by outside observers, but may be rated
as a highly creative problem-solving process by some individuals engaged
in the project.

Obligation/Community-based Intrinsic Motivations Lindenberg (2001)
makes the case that acting on the basis of principle is also a form of
intrinsic motivation. He argues that individuals may be socialized into
acting appropriately and in a manner consistent with the norms of a
group. Thus the goal to act consistently within the norms of a group can
trigger a normative frame of action. The obligation/community goal is
strongest when private gain-seeking (gaining personal advantage at the
expense of other group members) by individuals within the reference
community is minimized. He also suggests that multiple motivations, both
extrinsic and intrinsic, can be present at the same time. Thus a person
who values making money and having fun may choose opportunities
that balance economic reward (i.e., less pay) with a sense of having fun
(i.e., more fun).

In F/OSS projects, we see a strong sense of community identification and
adherence to norms of behavior. Participants in the F/OSS movement

Why Hackers Do What They Do 5

exhibit strong collective identities. Canonical texts like The New Hacker’s
Dictionary (Raymond 1996), The Cathedral and the Bazaar (Raymond 2001),
and the GNU General Public License (GPL) (Stallman 1999a) have created
shared meaning about the individual and collective identities of the
hacker2 culture and the responsibilities of membership within it. Indeed,
the term hacker is a badge of honor within the F/OSS community, as
opposed to its pejorative use in popular media. The hacker identity
includes solving programming problems, having fun, and sharing code at
the same time. Private gain-seeking within the community is minimized
by adherence to software licenses like the GPL and its derivatives, which
allow for user rights to source code and subsequent modification.

Extrinsic Motivation
Economists have contributed the most to our understanding of how extrin-
sic motivations drive human behavior. “The economic model of human
behavior is based on incentives applied from outside the person consid-
ered: people change their actions because they are induced to do so by an
external intervention. Economic theory thus takes extrinsic motivation to
be relevant for behavior” (Frey 1997, 13).

Lerner and Tirole (2002) posit a rational calculus of cost and benefit in
explaining why programmers choose to participate in F/OSS projects. As
long as the benefits exceed the costs, the programmer is expected to con-
tribute. They propose that the net benefit of participation consists of
immediate and delayed payoffs. Immediate payoffs for F/OSS participation
can include being paid to participate and user need for particular software
(von Hippel 2001a). Although the popular image of the F/OSS movement
portrays an entirely volunteer enterprise, the possibility of paid participa-
tion should not be ignored as an obvious first-order explanation of extrin-
sic motivations. Firms might hire programmers to participate in F/OSS
projects because they are either heavy users of F/OSS-based information
technology (IT) infrastructure or providers of F/OSS-based IT solutions. In
either case, firms make a rational decision to hire programmers to con-
tribute to F/OSS projects.

Another immediate benefit relates to the direct use of the software
product. Research on the sources of innovation has shown that users in
general and lead users in particular have strong incentives to create solu-
tions to their particular needs (von Hippel 1988). Users have been shown
to be the source of innovations in fields as diverse as scientific instruments
(Riggs and von Hippel 1994), industrial products (von Hippel 1988), sports
equipment (Franke and Shah 2003), and library information systems (Mor-

6 Karim R. Lakhani and Robert G. Wolf

rison, Roberts, and von Hippel 2000). Thus user need to solve a particular
software problem may also drive participation in F/OSS projects.

Delayed benefits to participation include career advancement (job
market signaling (Holmström 1999)) and improving programming skills
(human capital). Participants indicate to potential employers their supe-
rior programming skills and talents by contributing code to projects where
their performance can be monitored by any interested observer.3 Similarly,
firms looking for a particular skill in the labor market can easily find qual-
ified programmers by examining code contributions within the F/OSS
domain.

Participants also improve their programming skills through the active
peer review that is prevalent in F/OSS projects (Moody 2001; Raymond
2001; Wayner 2000). Software code contributions are typically subject to
intense peer review both before and after a submission becomes part of the
official code base. Source code credit files and public e-mail archives ensure
that faulty programming styles, conventions, and logic are communicated
back to the original author. Peers in the project community, software users,
and interested outsiders readily find faults in programming and often
suggest specific changes to improve the performance of the code (von
Krogh, Spaeth, and Lakhani 2003). This interactive process improves both
the quality of the code submission and the overall programming skills of
the participants.

Study Design and Sample Characteristics

Study Design
The sample for our survey was selected from among individuals listed
as official developers on F/OSS projects hosted on the SourceForge.net
F/OSS community Web site. At the start of our study period (fall 2001),
SourceForge.net listed 26,245 active projects. The site requires project
administrators to publicly characterize their project’s development status
(readiness of software code for day-to-day use) as planning, pre-alpha,
alpha, beta, production/stable or mature. Projects that are in the planning
or pre-alpha stage typically do not contain any source code and were elim-
inated from the population under study, leaving 9,973 available projects
for the sample.

We conducted two separate but identical surveys over two periods. The
first was targeted at alpha, beta, and production/stable projects and the
second at mature projects. Because of the large number of alpha, beta
and production/stable projects and the need to mitigate the effects of

Why Hackers Do What They Do 7

self-selection bias, we selected a 10 percent random sample from those pro-
jects and extracted individual e-mails from projects that listed more than
one developer.4 Those led to 1,648 specific e-mail addresses and 550 pro-
jects. The second survey’s sample was selected by obtaining the e-mail
addresses of all participants in mature projects that were on multiple-
person teams. This procedure identified 103 projects (out of 259) with 573
unique individuals (out of 997).

We collected data through a Web-based survey. We sent personalized
e-mails to each individual in our sample, inviting him or her to partici-
pate in the survey. Each person was assigned a random personal identifi-
cation number (PIN) giving access to the survey. Respondents were offered
the opportunity to participate in a random drawing for gift certificates
upon completion of the survey.

The first survey ran from October 10 to October 30, 2001. During this
time, 1,530 e-mails reached their destinations and 118 e-mails bounced
back from invalid accounts. The survey generated 526 responses, a
response rate of 34.3 percent. The second survey ran from April 8 to April
28, 2002. Of the 573 e-mails sent, all e-mails reached their destinations.
The second survey generated 173 responses for a response rate of 30.0
percent. Close examination of the data revealed that 15 respondents had
not completed a majority of the survey or had submitted the survey twice
(hitting the send button more than once). They were eliminated from the
analysis. Overall, the survey had 684 respondents from 287 distinct pro-
jects, for an effective response rate of 34.3 percent. The mean number of
responses per project was 4.68 (standard deviation (sd) = 4.9, median = 3,
range = 1–25).

Who Are the Developers?
Survey respondents were primarily male (97.5 percent) with an average age
of 30 years5 and living primarily in the developed Western world (45
percent of respondents from North America (U.S. and Canada) and 38
percent from Western Europe). Table 1.1 summarizes some of the salient
characteristics of the sample and their participation in F/OSS projects.

The majority of respondents had training in IT and/or computer science,
with 51 percent indicating formal university-level training in computer
science and IT. Another 9 percent had on-the-job or other related IT train-
ing. Forty percent of the respondents had no formal IT training and were
self taught.

Overall, 58 percent of the respondents were directly involved in the
IT industry, with 45 percent of respondents working as professional pro-

8 Karim R. Lakhani and Robert G. Wolf

grammers and another 13 percent involved as systems administrators or
IT managers. Students made up 19.5 percent of the sample and academic
researchers 7 percent. The remaining respondents classified their occupa-
tion as “other.” As indicated by table 1.1, on average the respondents had
11.8 years of computer programming experience.

Payment Status and Effort in Projects

Paid Participants
We found that a significant minority of contributors are paid to partici-
pate in F/OSS projects. When asked if they had received direct financial
compensation for participation in the project, 87 percent of all respon-
dents reported receiving no direct payments. But, as table 1.2 indicates, 55
percent contributed code during their work time. When asked: “if a work
supervisor was aware of their contribution to the project during work
hours,” 38 percent of the sample indicated supervisor awareness (explicit
or tacit consent) and 17 percent indicated shirking their official job while

Why Hackers Do What They Do 9

Table 1.1
General characteristics of survey respondents

Variable Obs Mean Std. Dev. Min Max

Age 677.00 29.80 7.95 14.00 56.00

Years programming 673.00 11.86 7.04 1.00 44.00

Current F/OSS projects 678.00 2.63 2.14 0.00 20.00

All F/OSS projects 652.00 4.95 4.04 1.00 20.00

Years since first contribution 683.00 5.31 4.34 0.00 21.00

to F/OSS community

Table 1.2
Location and work relationship for F/OSS contributions

Is supervisor aware of work time

spent on the F/OSS project? Freq. Percent

Yes aware 254 37.69

No, not aware 113 16.77

Do not spend time at work 307 45.55

Total 674 100.00

working on the project. The sum of those who received direct financial
compensation and those whose supervisors knew of their work on the
project equals approximately 40 percent of the sample, a category we call
“paid contributors.” This result is consistent with the findings from other
surveys targeting the F/OSS community (Hars and Ou 2002; Hertel,
Niedner, and Herrmann 2003).

Effort in Projects
We measure effort as the number of hours per week spent on a project.
This measure has been used in previous F/OSS studies (Hars and Ou 2002;
Hertel, Niedner, and Herrmann 2003) and provides an appropriate proxy
for participant contribution and interest in F/OSS projects. Survey respon-
dents were asked how many hours in the past week they had spent working
on all their current F/OSS projects in general and “this project” (the focal
project about which they were asked motivation questions) in particular.
Respondents said that they had, on average, spent 14.1 hours (sd = 15.7,
median = 10, range 0–85 hours) on all their F/OSS projects and 7.5 hours
(sd = 11.6, median = 3, range 0–75 hours) on the focal project. The distri-
bution of hours spent was skewed, with 11 percent of respondents not
reporting any hours spent on their current F/OSS projects and 25 percent
reporting zero hours spent on the focal project. Table 1.3 indicates that
paid contributors dedicate significantly more time (51 percent) to projects
than do volunteers.

Overall, paid contributors are spending more than two working days a
week and volunteer contributors are spending more than a day a week on
F/OSS projects. The implied financial subsidy to projects is substantial. The

10 Karim R. Lakhani and Robert G. Wolf

Table 1.3
Hours/week spent on F/OSS projects

Paid

contributor Volunteer

Average (sd) (sd) (sd) t statistic (p-value)*

Hours/week on 14.3 (15.7) 17.7 (17.9) 11.7 (13.5) 4.8 (0.00)

all F/OSS

projects

Hours/week on 7.5 (11.6) 10.3 (14.7) 5.7 (8.4) 4.7 (0.00)

focal F/OSS

project

* Two-tailed test of means assuming unequal variances

Note: n = 682.

2001 United States Bureau of Labor Statistics wage data6 indicated mean
hourly pay of $30.23 for computer programmers. Thus the average weekly
financial contribution to F/OSS projects is $353.69 from volunteers and
$535.07 from paid contributors (via their employers).

Creativity and Motivation in Projects

Creativity and Flow
Respondents noted a very high sense of personal creativity in the focal pro-
jects. They were asked: “imagine a time in your life when you felt most
productive, creative, or inspired. Comparing your experience on this
project with the level of creativity you felt then, this project is. . . .” More
than 61 percent of our survey respondents said that their participation in
the focal F/OSS project was their most creative experience or was equally
as creative as their most creative experience. Table 1.4 describes the
response patterns. There was no statistical difference between the responses
provided by paid and volunteer developers.

It may seem puzzling to nonprogrammers that software engineers feel
creative as they are engaged in writing programming code. As Csikszent-
mihalyi (1975; 1990; 1996) has shown, however, creative tasks often cause
participants to lose track of time and make them willing to devote addi-
tional hours to the task, a psychological state he calls “flow.” It appears
that our respondents may experience flow while engaged in programming.
Table 1.5 indicates that 73 percent of the respondents lose track of time
“always” or “frequently” when they are programming and more than 60
percent said that they would “always” or “frequently” dedicate one addi-
tional hour to programming (“if there were one more hour in the day”).

Why Hackers Do What They Do 11

Table 1.4
Creativity in F/OSS projects

Compared to your most creative

endeavour, how creative is this

project? Freq. Percent

Much less 55 8.16

Somewhat less 203 30.12

Equally as creative 333 49.41

Most creative 83 12.31

Total 674 100.00

Again, there was no significant statistical difference between the answers
provided by volunteers and paid contributors.

Motivations to Contribute
Table 1.6 provides a ratings breakdown of the motivations to contribute
to the focal F/OSS project. Respondents were asked to select up to three
statements (the table shows the exact wording used in the survey) that
best reflected their reasons for participating and contributing to “this”
project. As discussed in the literature review, motivations can be put
into three major categories: (1) enjoyment-based intrinsic motivations,
(2) obligation/community-based intrinsic motivations, and (3) extrinsic
motivations. We find evidence for all three types of motivations in F/OSS
projects.

User needs for the software, both work- and nonwork-related, together
constitute the overwhelming reason for contribution and participation
(von Hippel 1988; 2001a; 2002; 2005), with more than 58 percent of par-
ticipants citing them as important. But, since we asked separate questions
about work- and nonwork-related user needs, we also report that 33.8
percent of participants indicated work-related need and 29.7 percent par-
ticipants indicated nonwork-related need as a motive for participation. Less
than 5% of respondents rated both types of user needs as important.7

The top single reason to contribute to projects is based on enjoyment-
related intrinsic motivation: “Project code is intellectually stimulating to
write” (44.9 percent). This result is consistent with our previous findings
regarding creativity and flow in projects. Improving programming skills,
an extrinsic motivation related to human capital improvement, was a

12 Karim R. Lakhani and Robert G. Wolf

Table 1.5
“Flow” experienced while programming

How likely to lose How likely to devote extra

track of time when hour in the day to

Ratings on “flow” variables programming (%) programming (%)

Always 21.39 12.92

Frequently 51.33 47.14

Sometimes 22.27 34.51

Rarely 4.28 4.11

Never 0.74 1.32

Total 100 100

Note: n = 682.

Why Hackers Do What They Do 13

Table 1.6
Motivations to contribute to F/OSS projects

Percentage of

respondents

indicating up

to three

statements

that best Significant

reflect their Percentage of difference (t

reasons to volunteer Percentage of statistic/p

Motivation contribute contributors paid contributor value)

Enjoyment-based intrinsic motivation

Code for 44.9 46.1 43.1 n.s.

project is

intellectually

stimulating to

write

Economic/extrinsic-based motivations

Improve 41.3 45.8 33.2 3.56

programming (p = 0.0004)

skills

Code needed 58.7 — — —

for user need

(work and/or

nonwork)*

Work need 33.8 19.3 55.7 10.53

only (p = 0.0000)

Nonwork 29.7 37.0 18.9 5.16

need (p = 0.0000)

Enhance 17.5 13.9 22.8 3.01

professional (p = 0.0000)

status

Obligation/community-based intrinsic motivations

Believe that 33.1 34.8 30.6 n.s.

source code

should be

open

Feel personal 28.6 29.6 26.9 n.s.

obligation to

contribute

because use

F/OSS

close second, with 41.8 percent of participants saying it was an important
motivator.

Approximately one-third of our sample indicated that the belief that
“source code should be open,” an obligation/community motivation, was
an important reason for their participation. Nearly as many respondents
indicated that they contributed because they felt a sense of obligation to
give something back to the F/OSS community in return for the software
tools it provides (28.6 percent). Approximately 20 percent of the sample
indicated that working with the project team was also a motivate for their
contribution. Motivations commonly cited elsewhere, like community rep-
utation, professional status, and defeating proprietary software companies
(Raymond 2001; Lerner and Tirole 2002), were ranked relatively low.

Another source of an obligation/community motivation is the level of
identification felt with the hacker community. Self-identification with the
hacker community and ethic drive participation in projects. Respondents
to our survey indicated a strong sense of group identification, with 42
percent indicating that they “strongly agree” and another 41 percent
“somewhat agree” that the hacker community is a primary source of their
identity.8 Nine percent of the respondents were neutral and 8 percent were
somewhat to strongly negative about the hacker affiliation.9

14 Karim R. Lakhani and Robert G. Wolf

Table 1.6
(continued)

Like working 20.3 21.5 18.5 n.s.

with this

development

team

Dislike 11.3 11.5 11.1 n.s.

proprietary

software and

want to defeat

them

Enhance 11.0 12.0 9.5 n.s.

reputation in

F/OSS

community

Notes: Aggregation of responses that indicated needing software for work and/or

nonwork-related need. Not an actual survey question. Overlap in user needs limited

to 4.9 percent of sample.

n.s. = not significant, n = 679.

Table 1.6 also indicates significant differences in motivations between
paid contributors and volunteers. The differences between the two groups
are consistent with the roles and requirements of the two types of F/OSS
participants. Paid contributors are strongly motivated by work-related user
need (55.7 percent) and value professional status (22.8 percent) more than
volunteers. On the other hand, volunteers are more likely to participate
because they are trying to improve their skills (45.8 percent) or need the
software for nonwork purposes (37%).

To better understand the motives behind participation in the F/OSS
community, and the reason that no one motivation, on its own, had more
than 50% importance, we decided to do an exploratory cluster analysis
to see whether there were any natural groupings of individuals by moti-
vation type. We used k-means cluster analysis, with random seeding. The
four-cluster solution provided the best balance of cluster size, motivational
aggregation, stability, and consistency and is presented in table 1.7.
The motivations that came out highest in each cluster have been
highlighted.

Cluster membership can be explained by examining the motivation cat-
egories that scored the highest in each cluster. Cluster 3 (29 percent of the

Why Hackers Do What They Do 15

Table 1.7
Cluster results based on motivations and paid status

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Motivations (%) (%) (%) (%)

Work need 91 8 12 28

Nonwork need 11 100 0 2

Intellectually stimulating 41 45 69 12

Improves skill 20 43 72 19

Work with team 17 16 28 19

Code should be open 12 22 42 64

Beat proprietary software 11 8 9 19

Community reputation 14 8 11 13

Professional status 25 6 22 18

Obligation from use 23 20 6 83

Paid for contribution 86 18 26 32

Total percentage of sample 25 27 29 19

in each cluster

Note: n = 679.

sample) consists of individuals who contribute to F/OSS projects to
improve their programming skills and for intellectual stimulation. None
of the members of this cluster noted nonwork-related need for the project
and very few, 12 percent, indicated work-related need for the code.
Members of this group indicated an affinity for learning new skills and
having fun in the process. The actual end product does not appear to be
a large concern; both enjoyment-based intrinsic motivation and career-
based extrinsic motivation are important to this group.

All members of cluster 2 (27 percent of the sample) indicate that
nonwork-related need for the code is an important motive for their par-
ticipation. The primary driver for this group is extrinsic user need. Simi-
larly, cluster 1 (25 percent of the sample) represents individuals who are
motivated by work-related need with a vast majority (86 percent) paid for
their contributions to F/OSS projects. This cluster can also be thought of as
composed of people with extrinsic motivations. Cluster 4 (19 percent of the
sample) consists of people motivated primarily by obligation/community-
based intrinsic motivations. A majority of this cluster report group-
identity-centric motivations derived from a sense of obligation to the
community and a normative belief that code should be open.

The cluster analysis clearly indicates that the F/OSS community is
heterogeneous in motives to participate and contribute. Individuals join
for a variety of reasons, and no one reason tends to dominate the
community or to cause people to make distinct choices in beliefs. These
findings are consistent with collective action research, where group het-
erogeneity is considered an important trait of successful social movements
(Marwell and Oliver 1993).

Determinants of Effort

Our findings so far have confirmed the presence of all three types of moti-
vations, with no clear and obvious determinants of effort. We do note that
paid contributors work more hours than volunteers. Given that there were
not that many significant differences in motivations between paid and vol-
unteer contributors, though, we are left with an open question regarding
the effect the types of motivation (intrinsic vs. extrinsic) on effort in pro-
jects. To address the question, we ran an ordinary least squares (OLS)
regression on the log of hours/week10 dedicated to the focal project.

Table 1.8 presents the standardized11 values of the coefficients of signi-
ficant variables in the final regression. A personal sense of creativity with
a F/OSS project has the largest positive impact on hours per week. Being

16 Karim R. Lakhani and Robert G. Wolf

paid to write code and liking the team have significant positive effects that
are approximately half the weight of a sense of creativity. Caring about
reputation in the F/OSS community has about one-third the impact as
feeling creative with a project. Number of hours dedicated to other F/OSS
projects has a negative impact equal to that of creativity on the current
project. We can see that various F/OSS projects compete for time, and that
distractions from other projects can reduce the hours spent on the focal
project. Having formal IT training also reduces the number of hours spent
on a project.

As mentioned in the literature review, proponents of intrinsic motiva-
tion theories have assembled an impressive array of experimental evidence
to demonstrate that extrinsic rewards have a negative impact on intrinsic
motivations. An obvious test in our study is to examine the impact of the
interaction between being paid and feeling creative on the number of
hours per week dedicated to a project. Regression analysis showed that
there was no significant impact on the hours per week dedicated due to
the interaction of being paid and feeling creative. Hours per week dedi-
cated to a project did not decline, given that those who are paid to con-
tribute code also feel creative about that project.

Researchers engaged in studying creativity have traditionally used third-
party assessments of innovative output as measures of creativity. Thus our
finding that a sense of personal creativity is the biggest determinant of
effort in F/OSS projects may be due to the inherent innovative nature of the
project itself and not to personal feelings of creativity. Since we have mul-
tiple responses from many projects, we can test whether the creativity felt is
endogenous to the project or to the individual. Results from a fixed-effects

Why Hackers Do What They Do 17

Table 1.8
Significant variables in regression of log (project hours/week) and motivations

Standardized

Variable coefficient t-statistic (p-value)

Creative project experience 1.6 6.00 (0.000)

Paid status 0.88 3.12 (0.002)

Like team 0.84 2.76 (0.004)

Enhance community reputation 0.56 2.00 (0.046)

Differential hours -1.6 -6.00 (0.000)

IT training -0.6 -2.28 (0.023)

Note: r-Square = 0.18, n = 630.

regression (Greene 2000) showed that a personal sense of creativity in a
project is still positive and significant, indicating that the sense of creativity
is endogenous and heterogeneous to the people within projects.

Discussion

The most important findings in our study relate to both the extent and
impact of the personal sense of creativity developers feel with regard to
their F/OSS projects. A clear majority (more than 61 percent) stated that
their focal F/OSS project was at least as creative as anything they had done
in their lives (including other F/OSS projects they might have engaged in).
This finding is bolstered by the willingness of a majority of survey partic-
ipants to dedicate additional hours to programming, and, consistent with
attaining a state of flow, frequently losing track of time while coding. These
observations are reinforced by the similar importance of these creativity-
related factors for both volunteer and paid contributors.

The importance of the sense of creativity in projects is underscored by
examination of the drivers of effort in F/OSS projects. The only significant
determinants of hours per week dedicated to projects were (in order of
magnitude of impact):

� Enjoyment-related intrinsic motivations in the form of a sense of
creativity
� Extrinsic motivations in form of payment
� Obligation/community-related intrinsic motivations

Furthermore, contrary to experimental findings on the negative impact
of extrinsic rewards on intrinsic motivations (Deci, Koestner, and Ryan
1999), we find that being paid and feeling creative about F/OSS projects
does not have a significant negative impact on project effort.

Therefore, work on the F/OSS projects can be summarized as a creative
exercise leading to useful output, where the creativity is a lead driver of
individual effort.

Programming has been regarded as a pure production activity typified as
requiring payments and career incentives to induce effort. We believe that
this is a limited view. At least as applied to hackers on F/OSS projects, activ-
ity should be regarded as a form of joint production–consumption that
provides a positive psychological outlet for the participants as well as useful
output.

Another central issue in F/OSS research has been the motivations of
developers to participate and contribute to the creation of a public good.

18 Karim R. Lakhani and Robert G. Wolf

The effort expended is substantial. Individuals contribute an average of 14
hours per week. But there is no single dominant explanation for an indi-
vidual software developer’s decision to participate in and contribute to a
F/OSS project. Instead, we have observed an interplay between extrinsic
and intrinsic motivations: neither dominates or destroys the efficacy of the
other. It may be that the autonomy afforded project participants in the
choice of projects and roles one might play has “internalized” extrinsic
motivations.

Therefore, an individual’s motivation containing aspects of both extrin-
sic and intrinsic is not anomalous. We have observed clusters of individu-
als motivated by extrinsic, intrinsic, or hybrid extrinsic/intrinsic factors.
Dominant motives do not crowd out or spoil others. It is consistent for
someone paid to participate in the F/OSS movement to be moved by the
political goals of free software and open code.

Other issues merit further investigation. The presence of paid partici-
pants—40 percent of our study sample—indicates that both IT-producing
and IT-using firms are becoming important resources for the F/OSS com-
munity. The contribution of firms to the creation of a public good raises
questions about incentives to innovate and share innovations with poten-
tial competitors. In addition, the interaction between paid and volunteer
participants within a project raises questions about the boundaries of the
firm and appropriate collaboration policies.

In conclusion, our study has advanced our understanding of the moti-
vational factors behind the success of the F/OSS community. We note that
the F/OSS community does not require any one type of motivation for par-
ticipation. It is a “big tent.” Its contributors are motivated by a combina-
tion of intrinsic and extrinsic factors with a personal sense of creativity
being an important source of effort.

Notes

We would like to thank the developers on the SourceForge.net F/OSS projects for

being so generous with their time while answering our survey. We would also like

to thank the following colleagues for their helpful comments and feedback during

the early versions of this chapter: Jeff Bates, Jim Bessen, Paul Carlile, Jonathon

Cummings, Joao Cunha, Chris DiBona, Jesper Sorensen, and Eric von Hippel. The

following colleagues at BCG were extremely helpful during the study: Mark Blaxill,

Emily Case, Philip Evans and Kelly Gittlein. Mistakes and errors remain ours.

1. The subject of intrinsic motivation has been well studied in psychology; for

reviews see Deci, Koestner, and Ryan (1999) and Lindenberg (2001).

Why Hackers Do What They Do 19

2. Hacker as in The New Hacker’s Dictionary (Raymond 1996): “hacker: n. [originally,

someone who makes furniture with an axe] 1. A person who enjoys exploring the

details of programmable systems and how to stretch their capabilities, as opposed

to most users, who prefer to learn only the minimum necessary. 2. One who pro-

grams enthusiastically (even obsessively) or who enjoys programming rather than

just theorizing about programming. 3. A person capable of appreciating hack value.

4. A person who is good at programming quickly. 5. An expert at a particular

program, or one who frequently does work using it or on it; as in “a Unix hacker.”

(Definitions 1 through 5 are correlated, and people who fit them congregate.) 6. An

expert or enthusiast of any kind. One might be an astronomy hacker, for example.

7. One who enjoys the intellectual challenge of creatively overcoming or circum-

venting limitations. 8. [deprecated] A malicious meddler who tries to discover sen-

sitive information by poking around. Hence “password hacker,” “network hacker.”

The correct term for this sense is cracker.

3. The widespread archiving of all F/OSS project-related materials like e-mail

lists and code commits enables a detailed assessment of individual performance.

4. The “greater than one developer” criteria was used to ensure selection of projects

that were not “pet” software projects parked on SourceForge.net, but rather projects

that involved some level of coordination with other members.

5. At time of study.

6. Available at http://www.bls.gov/oes/2001/oes_15Co.htm, accessed April 2,

2003.

7. A detailed examination of the difference in project types between those that

stated work-related needs and those that stated nonwork-related needs showed that

there was no technical difference between them. A majority of the projects that were

described as nonwork were of sufficient technical scope and applicability that firms

also produced similar proprietary versions. We therefore see a blurring of distinc-

tion in the software produced for work and nonwork purposes. The general-purpose

nature of computing and software creates conditions such that a similar user need

can be high in both work and nonwork settings.

8. Respondents were given the definition of “hacker” in note 2 when asked the ques-

tion about identity.

9. The results were identical when controlled for paid contributor status on a

project.

10. We chose to use the log of project hours/week because of the skewness in the

reported data. A log transformation allows us to better represent the effects of small

changes in the data at the lower values of project hours/week. It is safe to argue that

there is a significant difference between 4 versus 8 project hours/week and 25 versus

29 project hours/week. The magnitude of the effort expended is much greater at the

20 Karim R. Lakhani and Robert G. Wolf

lower values of the measure and the log transformation allows us to capture this

shift. Since the log of zero is undefined, all zero values were transformed to 0.00005,

giving us the desired impact for a very small and insignificant value.

11. Standardizing the variables to allows us to make comparison across all

motivation factors, since the original variables had different underlying values. All

variables in the regression were transformed so that the mean = 0 and the variance

= 1.

Why Hackers Do What They Do 21

2 Understanding Free Software Developers: Findings

from the FLOSS Study

Rishab Aiyer Ghosh

This chapter presents an overview of findings from the Survey of
Developers from the FLOSS (Free/Libre/Open Source Software) project,
involving over 2,700 respondents from among free/open source software
developers worldwide. The survey studied several factors influencing devel-
opers’ participation within the free/open source community, including
their perceptions of differences within the community and with the com-
mercial software world; personal, ethical, political, and economic motives
for participation; and their degree of interaction within and contribution
to the free/open source software community. These results are linked to
preliminary findings from a study of developer contribution to the Linux
kernel based on an analysis of the source code.

The Need for Empirical Data

The phenomenon of Free/Libre/Open Source Software1—the development
of software through collaborative, informal networks of professional or
amateur programmers, and the networked distribution making it available
to developers and end-users free of charge—has been widely and well doc-
umented. Editorials and policy papers have been written on the impact of
the free software movement on the computer industry, business in general
and the economy at large. However, few models have been developed that
successfully describe, with supporting data, why or how the system works,
or that explain the functioning of collaborative, productive networks
without primary dependence on money.

The common speculation regarding the monetary worth of such collab-
orative development has translated into widely fluctuating share prices for
the companies that have devoted much of their business plans to the free
software philosophy. But hard data on the monetary value generated by
this phenomenon is almost nonexistent. Indeed, hard data on any aspect

of the FLOSS phenomenon is rare. One reason for this lack of empirical
data might be that in a very short period of time, this phenomenon has
attracted a lot of research attention. Researchers and practitioners have
tended to be quick to state that open source is (or is not) a revolutionary
“new” form of something—programming, economic production, or social
interaction. These explanations have generally been based on anecdotal
evidence or very small sample data, which doesn’t make them wrong—just
hypothetical.2

Given that most models and techniques for economic evaluation and
measurement require the use of money, nonmonetary economic activity,
such as the creation and distribution free software, is left unmeasured, at
least in any usefully quantifiable sense. Although there are studies and
models for quantitative analysis of nonpriced goods (e.g., the measurement
of knowledge), in an economy they tend to be useful primarily in judging
the influence of such goods within organizations, markets, or other socioe-
conomic structures for which the common forms of measurement are
clearly dominated by monetary indicators. Measurement is far more
complex and ambiguous in a context where the essential and primary eco-
nomic activity—the generation of free software through collaborative
networks—is unusual in its avoidance of the use of money as mode of
exchange.

The lack of empirical data is not surprising, though—it is extremely hard
to collect, for several reasons. First, without monetary measures, other indi-
cators of developers’ activity have to be used (indeed, defined in order to
be used). While there may be some quantitative indicators that are objec-
tive in nature,3 the lack of objective “census-type” sources means that
many indicators, quantitative or qualitative, may require the use of
surveys.

Who Can We Survey?
This leads to an immediate problem: there is no universal, clearly recog-
nized, objective data on the population to be surveyed. While seemingly
obvious, it bears emphasizing that there is no clear definition of a free
software developer (other than “someone who writes free software code”);
there is no universal list of all developers; there is no accurate information
on the number of developers in existence or the growth in this number.4

There is no census or national accounts database that lists the distribution
of developers by country of residence, age, income level, or language.

The lack of a basic data set on the universal population, something that
is taken for granted in surveys of many other groups, is unavailable for

24 Rishab Aiyer Ghosh

FLOSS software developers, with the result that attempts to fill in gaps in
empirical factual data through surveys require a choice from among three
types of surveys:

1. Survey responses that might be indicative of the general population, but
provide reliable data only on the actual respondents.
2. Survey responses that reflect a predefined subset of the general popula-
tion, providing insights into that subset, but certain responses might be a
consequence of the predefinition (preselection) process and thus not reflect
the general population.
3. Survey respondents are drawn randomly from the general population;
thus, while responses reflect the general population as a whole, they might
not be representative of the general population for certain (especially
demographic) criteria.

For completeness, the fourth option, which is ideal but unavailable, is also
listed:

4. Survey respondents are drawn from the general population in order to
be representative of the general population for certain criteria; for example,
age or nationality, thus leading to responses that reflect the general popu-
lation and also follow the distribution (based on the representation
criteria) of the general population.

The BCG/OSDN survey (Boston Consulting Group 2002) is an example
of the second approach. By prescreening respondents and inviting their
response by e-mail, it clearly defined the subset of the general population
from which the sample was drawn. As such, responses can be representa-
tive of the pre-screened subpopulation, and even weighted in order to truly
reflect the defined population subset. However, the results say little about
the general population beyond the defined subset, as it was not sampled
at all. Indeed, some results, such as nationality, years of experience, or
political attitudes might result from the preselection criteria,5 and though
these results provide interesting detail on the sub-population, they cannot
be generalized to apply to the universal free software developer.

For the FLOSS developer survey, we chose the third option.

Secondary Sources
Empirical data on FLOSS developers is not only difficult to collect, but once
collected might also be somewhat unreliable. This is perhaps a reason to
try to find secondary sources to match subjective empirical data, and
methods of validating them—it also provides a handy excuse for papers
that do not cite empirical data!

Understanding Free Software Developers 25

Such secondary sources include not just objective data resulting from
analysis of source code,6 but also more conventionally reliable surveys of,
for instance, institutions that use free software. Such surveys can be con-
ducted in an orthodox fashion, using industrial databases or public census
records to build stratified representative samples, as was done in the FLOSS
Survey of User Organisations.7 Institutional surveys are immensely use-
ful in themselves, to study the large-scale use of free software, but they
can also provide data on organizations’ relationships with developers
that, with some “triangulation,” can corroborate the results of developer
surveys.

Models and Hypotheses

The FLOSS developer survey aimed to gather data that would support
(or refute) the several anecdote-based models of FLOSS development that
exist. Broadly, hypothetical models of free software developers attempt to
interpret the motives of developers, determine the structure of their inter-
action, and predict their resulting individual and collective behaviour.
(Some models are less concerned about precise motives; Ghosh (1998a)
only claims that altruism is not a significant motive, and Benkler (2002)
argues that specific modes of organization, rather than motives, are
important.)

Our survey was designed to test the assumptions made by many models
and to collect a set of data points that could be used to validate or improve
such models.

Assumed Motivations
Are developers rational, and if so, are they altruistic, or self-interested? Are
they driven by a profit motive, and if so, is it monetary or non-monetary?
Do they want to become famous? Are they writing free software to signal
their programming proficiency in the job market? Or do they just want to
fix a problem for their own use? Are they mainly interested in having fun?
Is programming artistic self-expression? Or is it self-development, a dis-
tributed university? Or is it a community experience, where the pleasure
is in giving to others? Are developers politically driven, wanting to destroy
large software companies or the notion of proprietary software and intel-
lectual “property”?

Most models of FLOSS development assume one or another of these
motives as the key driver. In fact, it turns out, the truth is all of the above,
combined in different proportions for different people. The survey ques-

26 Rishab Aiyer Ghosh

tionnaire had several questions dealing with motivation, some of them
with overlapping responses; people don’t always think consciously about
their motives, and repetition and different phrasing help draw out more
data and add perspective.

Assumed Organization
When any group of individuals interacts, the structure of their interaction
is a strong determinant of their effectiveness and output. Organizational
structure may be a result of the motives of individual participants; it may
also prompt or create certain motives. For example, in a strictly hierarchi-
cal organization, getting to the top may be an important motive; in a flat
organization, being at the top may have fewer benefits and thus be less
motivating.

Organizational structure is a predictor of behavior, though, and many
models of free software development use an assumed organizational
structure in order to predict behavior. Benkler’s (2002) “peer production”
depends fundamentally on structural assumptions; Lerner and Tirole’s
“Simple Economics” (chap. 3, this volume) does not directly depend on
a certain organizational structure in FLOSS developer communities, but
requires that the structure facilitate the spread of reputation (as signaling)
within the community and to the employment market (thus also assum-
ing a meta-structure linking the FLOSS community to the priced economy
directly via the job market). The “cooking-pot” model and the “bazaar”
(Raymond 2001), though, are more tolerant of different organizational
structures.

In the context of free software developer communities, one could clas-
sify organizational structure on the axes of hierarchy, modularity, and
connectivity (see table 2.1). Here, modular/integrated refers to the extremes
in the integrated nature of the production, while connectivity refers to the
integrated nature of the interaction (or social links, which might or might
not lead to integrated products), so this is not just the organizational
structure of a community, but of a productive community. Of course the
examples given in each box are somewhat arbitrary, as not all boxes
can be reasonably filled in and retain relevance to the context of FLOSS
development.

Organizational structure can be determined to some extent (and even
objectively) by analyzing source code, which allows the measurement of
modularity, but also the degree of connectivity and even hierarchy (using
concentration of contribution as a proxy) through the identification of
authors and clusters of authorship.8

Understanding Free Software Developers 27

Otherwise, determining organizational structure empirically on a large
scale is hard.9 Through a developer survey, it can be estimated by asking
about the number of projects a developer participates in, degree of collab-
oration with other developers, and leadership positions.

Assumed Behavior
Behavior, individual or collected, is what models aim to predict, so empir-
ical data plays a valuable role here in testing the validity of models. Most
such data is likely to result from objective studies of developer communi-
ties, such as the dynamic study of the developers and components of the
Linux kernel in the LICKS project.10 From developer surveys, especially if
conducted repeatedly over time, it would be possible to determine whether
certain types of behaviour occur as predicted by models, or indeed as pre-
dicted by developers’ own responses to other questions.

This is useful in order to validate the strength of reported motivations;
for example, it is harder to believe those who claim money is not a moti-
vation if they also report high earnings from their FLOSS software. At
the very least, one might expect (from the point of view of consistency)
that developer’s motives change over time based on the rewards (or lack
thereof) they receive through their efforts. Indeed the FLOSS developer
survey attempts to measure this dynamic aspect of motivation by asking
what motivated developers when they first joined the community, in
addition to their motivations for continuing participation. As both ques-
tions are asked at the same time, this response relies on developers’
memory.

28 Rishab Aiyer Ghosh

Table 2.1
A classification of organizational structures

Modular, Integrated, Modular, Integrated,

connected connected nonconnected nonconnected

Hierarchy Cabal/inner Commercial Benevolent Commercial

circle (bazaar), (cathedral) Dictator

“Simple (bazaar)

Economics”

(signaling)

Flat “Peer “Hive mind” “Peer ?

production” with production”

reputation, (bazaar)

“Cooking-pot

market”

Other measurable aspects of behavior relate to developers’ planned
future actions (as reported); for instance, with relation to the job market.
Later sections elaborate on this topic through the lens of the FLOSS survey.

Conducting the FLOSS Developer Survey

Methodology and Sampling
Early in the design of the FLOSS survey methodology, we faced the ques-
tion of whether it is possible to survey a representative sample of devel-
opers. The question actually has two parts: is it possible to ensure that
respondents are developers, and is it possible to identify a sample that is
representative of developers based on some filtering criteria? We’ll address
take the second question first.

Our conclusion, as described previously, was that there is insufficient
empirical data on FLOSS software developers to identify the criteria of
sampling. However, without empirical data as a basis, it is not possible
to demonstrate that a chosen sample of respondents is representative of
developers in general: that is, it is impossible to sample developers and
know with any confidence that the distribution of nationalities, age, or
income levels is representative of the distribution in the total (unsampled)
population of developers.

Therefore, we decided that in order to have results with empirical valid-
ity for the universal population of developers; we would have to attempt
a random sample. The survey was self-distributing that is, it was posted
to various developer forums, and then reposted by developers to other
forums, many of which are listed in the FLOSS survey report’s (http://
flossproject.org/) Web site. The survey announcement was translated
into various languages in order to correct possible biases inherent in an
English-language survey announced only on English-language websites.11

We can state confidently that the survey was seen by a very large per-
centage of all developers (it was announced on Slashdot, among other
places) and therefore the sample that chose to respond was random,
though with some identifiable bias (including, as with any voluntary
survey, self-selection).

Having drawn a random sample, we had to ensure that we were indeed
drawing a sample of actual developers. We were able to do so through the
validation process described in the following section.

Response Rate and Validation
One of the requirements of open, online questionnaires is verifying that
the respondents really belong to the group that is under scrutiny. The

Understanding Free Software Developers 29

survey definition of the universal developer population is “everyone who
has contributed source code to a free/libre/open source software package.”
Our respondents belong to this population as follows:12

� We asked respondents to provide complete or partial e-mail addresses for
validation purposes.
� We matched these e-mail addresses to names or e-mail addresses found
in the source code analysis (see Ghosh et al. 2002, part V) or matching
them to sources on Internet archives.
� This subsample of 487 respondents individually identified as certain
developers were compared to the rest of the respondents by statistically
comparing their responses. This process involved a comparison of means
and standard deviations of the two groups (known developers and other
respondents) with regard to a selection of variables of our data set. The
result showed very little statistical difference. In the very few responses
where minor differences existed, we found that the group of verified FLOSS
developers consisted of slightly more active and professionally experienced
persons.

The FLOSS developer survey received 2,774 responses. Due to the page-
wise design of the questionnaire, where responses to the first page were
recorded even as the next page of questions were presented, this figure rep-
resents the respondents who answered the first set of questions, while there
were 2,280 responses to the entire questionnaire.

What Do We Know Now?

Demographics: Married with Children?
A presentation of demographics is usually the starting point for an analy-
sis of any survey. For the reasons given earlier, the FLOSS methodology
does not provide a sampling that is representative of developer demo-
graphics, especially of the geographic distribution of developers. (A com-
parison of geographical data from different developer surveys, as well as
much else that this chapter draws on, is in Ghosh et al. 2003.) It is possi-
ble to discuss other features of developer demographics, though, for which
the FLOSS survey is likely to be more representative, such as age, gender,
and civil status (which we presume have a similar distribution across dif-
ferent nationalities).

Almost all (98.8 percent) of respondents to the FLOSS developer survey
are male. This is similar to the 98.6 percent reported as male in the WIDI
survey (from a much larger sample size, of nearly 6,000; see Robles-

30 Rishab Aiyer Ghosh

Martínez et al. 2001) and 98 percent reported as male in the BCG survey
(chap. 1, this volume). It should be noted that the surveys probably under-
represent female developers. As self-selecting surveys, they are dependent
on developers who chose to respond to the survey itself, and to the spe-
cific question on gender. However, given the degree of coincidence on this
point across three quite different surveys, it would seem unlikely that
female participation in the FLOSS developer community is much higher
than 5–7 percent.

The FLOSS survey showed developers are quite young, with more than
60 percent between the ages of 16 and 25. Figure 2.1 shows the cumula-
tive percentage for developers’ age when they first started free software
development, compared with developers’ current age. Because we asked
when respondents first started development and their age at that time, we
were able to calculate two age points for each developer as well as identify
the peak year for the start of development—2000 (the survey was carried
out in early 2002).

Despite the apparent youth of developers, as figure 2.2 shows, single
developers are in a minority (albeit a large one, 41.4 percent) and about
the same as the surprisingly large fraction (39.9 percent) who live together

Understanding Free Software Developers 31

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti

ve
 P

er
ce

n
t

Age (Years)

Starting Age
Current Age

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Figure 2.1
Current and starting age of developers (© 2002 International Institute of Infonom-

ics, FLOSS developer survey)

with a partner or spouse. Again, going against the nerdish stereotype, 17
percent of developers reported having children. Half of those have one
child. There is a correlation between having children (or even being
married) and having a stronger career-oriented participation in develop-
ment. Most children were reported to be under two years of age at the time
of the survey. One might thus wonder whether as the free software baby
boom coincided with the dot-com peak, developers saw their earning pos-
sibilities soar and took on financial and familial responsibilities.

Motivation
The FLOSS survey addressed the complex issue of what motivates devel-
opers to contribute to the community in a series of multidimensional ques-
tions. This aspect in particular is elaborated in much detail in Ghosh et al.
2003, so only brief summary is presented here.

When I started writing about free software—and “non-monetary eco-
nomic”13—phenomena in the mid-1990s, there was widespread suspicion
among traditional economists and others that this was a domain either
for hobbyists or for irrational groups of people mainly driven by warm
fuzzy feelings of communal sharing and gifts. Since the idea of a gift is
usually associated with knowing the recipient, and the politics of deve-
lopers in particular tend towards the libertarian rather than the com-
munitarian, the notion of “gift economy”14 might seem unjustified. As
open source became a hot topic for investigation in the social sciences,
recent hypotheses usually supposed largely rational, self-interested
motives, among the most extreme being that open source is explained by
the “simple economics” of signaling for better career prospects and hence
monetary returns.15

32 Rishab Aiyer Ghosh

Partner, living together
18.8

Married, not living together
0.1

Married 21.1

Partner, not living together
18.6

Single 41.4

Figure 2.2
Civil status of developers

In the absence of clear monetary transactions, the interplay of contri-
bution and return can be described in the form of “balanced value flow”16

where one assumes rational self-interest but allows that self-interest can
include a range of different types of reward, not just monetary compen-
sation. While the FLOSS survey attempts to measure some of these possi-
ble rewards, a simple question is to ask whether individual developers value
their own contribution more or less than their perceived rewards; that is,
“I give more than/less than/the same as I take” in relation to the devel-
oper community at large.

We asked exactly this, and the resulting “selfishness measure” or “altru-
ism measure” is shown in figure 2.3, for respondents falling into four moti-
vation categories (as described later in this section). This measure ranges
from -1 (purely altruistic) and +1 (purely selfish) and is calculated as the
difference between the “selfish” responses (“I take more than give “) and
the “altruistic” responses (“I give more than I take”), as a fraction of total
responses.17

What we see is that more respondents are selfish than altruistic from all
motive classes. Indeed, 55.7 percent of all developers classified their rela-
tionship with the community as “I take more than I give” and a further
14.6 percent felt their contribution and reward was balanced; only 9
percent could be classed as consciously altruistic in that they reported that
they give more than take. It should be noted that this measure does not
reflect selfishness or altruism as intent—which is what would be correct—
but as an outcome, in which case the words don’t fit as accurately. Thus,

Understanding Free Software Developers 33

S
e
lf

is
h

n
e
s
s

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

Motive class

social/community career/monetary political product-related

Figure 2.3
“Selfishness” or “profit-seeking measure” of developers

the responses are consistent with self-interested participation and indicate
that developers perceive a net positive value flow.

Figure 2.4 shows responses to the two main questions on motivation,
asking developers for their reasons to first start developing free software
and their reasons for continuing in the free software community. The chart
groups the reported reasons into broad headings. Most notable is that the
most important, reason to join and continue in the community is “to learn
and develop new skills,” highlighting the importance of free software as a
voluntary training environment.

As a preliminary attempt to integrate the multiple, simultaneous reasons
provided, respondents have been organized into four motivation classes
(figure 2.5): social/community motives; career or monetary concerns; polit-
ical motives; purely product-related motives. This is further explained in
Ghosh et al. 2003, but in summary, while many developers express social
or community-related motives, only those who also express career con-
cerns were included in the second category, while only those who also
express political views were placed in the third category. The last category
is necessarily small, because it comprises those who expressed only product-

34 Rishab Aiyer Ghosh

get a reputation in OS/FS community

participate in the OS/FS scene

learn and develop new skills

0 10 20 30 40 50 60 70 80 90

Monetary

Product-related

Political

Social

share knowledge and skills

participate in a new form of cooperation

think that software should not be a proprietary good

limit the power of large software companies

solve a problem that could not be solved by proprietary software

get help in realizing a good idea for a software product

improve OS/FS products of other developers

improve my job opportunities

distribute not marketable software products

make money

% of Respondents

Signaling

Reason to continue with F/LOSS
Reason to start F/LOSS

Figure 2.4
Initial and current motivations for FLOSS development (© 2002 International Insti-

tute of Infonomics)

related motives (participating in the developer community to improve a
software product, for instance). Of course, there are many ways of forming
these categories and how one forms them changes how they correlate to
other variables.

Organization
The FLOSS community shows simultaneously signs of both extreme con-
centration and widespread distribution. Measures of source code author-
ship show that a few individuals are responsible for disproportionately
large fractions of the total code base and this concentration is increasing
over time (the Gini coefficient for the Linux kernel18 is 0.79). Several pre-
vious studies using a variety of objective metrics have shown that large
fractions of code are developed by a small minority of contributors.19

However, the same studies and methods show that the majority of
developers contribute relatively small amounts of code, and participate
in a single or very few projects. Arguably, in the spirit of Raymond’s
(2001) view that “given enough eyeballs, all bugs are shallow” we can
assume that the small high-contribution minority would not be as pro-
ductive, and would be unable on their own to complete projects, with-
out the support of vast armies of low-contribution participants. Moreover,
the same objective metrics show that the majority of projects (or packages,

Understanding Free Software Developers 35

Social
motivations

Political
motivations

53.2

31.4

12.7

2.6

Motivational Dimensions

Career/
monetary concerns

Software-related
motivations

Figure 2.5
Developers by motive class, as percentage of total developers (© 2002 International

Institute of Infonomics, FLOSS Developer Survey)

or even modules in the Linux kernel) have a single author or very few
contributors.

Put together, these results suggest that the community is organized into
not a single core with a vast periphery, but a collection of cores each with
their own smaller, overlapping peripheries. This organization is fractal
in nature, in that the shape of concentration curves20 remains the same
no matter what level of detail is used; that is, the distribution of high-
and low-contribution developers is more or less the same whether one
looks at “all projects on Sourceforge” or at “modules in the Linux
kernel.”

The fractal nature of this would suggest an organizational mechanism
that is universal within the community, involving the development of
strong leadership structures in a highly modularized environment. This is
consistent with the FLOSS developer survey, where for the first time indi-
viduals were asked to measure their leadership role.

As figure 2.6 shows, only 35 percent of respondents claim to not be
leaders of any project, while 32 percent report they lead a single project.
Meanwhile, only 2 percent claim to lead more than five projects.

Figure 2.7 corroborates objective and other data sources showing that
most people have been involved in a small number of projects (a similar

36 Rishab Aiyer Ghosh

16–20

11–15

8–10

6–7

4–5

3

2

1

0

N
u

m
b

e
r

o
f

L
e

d
 O

S
/F

S
 P

ro
je

c
ts

0.2

0

0.3

0.9

0.8

5.0

7.7

17.9

32.1

35.2

More than 20

Figure 2.6
Leadership: number of projects involved in, percentage of respondents

but slightly different picture was reported when asked about current
involvement in projects, which probably says more about a developer’s
ability to manage time than his degree of involvement as such).

Finally, most models assume that there is considerable collaboration and,
more importantly, communication between developers in order to make
this highly modularized, distributed form of production work. Figure 2.8
shows what people reported when asked for the number of other members
of the developer community with whom they are in regular contact. The
terms contact and regular were deliberately left undefined by us for two
reasons: any definition we chose would be arbitrary, and we wanted to see
whether developers believe they are in regular contact, which is an impor-
tant insight into their own perception of the community’s organizational
structure. Surprisingly, as many as 17 percent reported being in regular
contact with no one, thus indicating that significant development does take
place in isolation (structural, if not necessarily social), at least between
points of code release.

What is perhaps predictable, and consistent with the other findings, is
that the vast majority of developers maintain regular contact with a small
number of other developers—indeed, more than 50 percent are in contact
with one to five others.

Understanding Free Software Developers 37

0.5

0.1

0.2

0.5

1.8

6.3

18.7

71.91–5

N
u

m
b

e
r

o
f

O
S

/F
S

 P
ro

je
c
ts

More than 100

76–100

51–75

31–50

21–30

11–20

6–10

Figure 2.7
Number of projects involved in so far, percentage of respondents

Subjective Responses, Objective Data?

Responses to any survey such as this one are necessarily subjective. Natu-
rally, this is so even for the several questions that would have objective
answers, such as the number of projects to which a developer has con-
tributed, or monthly income, or whether such income is a direct result of
involvement in free software development.

Some of these objective data can be checked against secondary sources,
which may be more reliable or less subjective than survey responses. Some
objective data, and even subjective data, can be checked against responses
to other survey questions—although this doesn’t make the responses any
less subjective, one can at least know whether the subjectivity is internally
consistent or self-contradictory.

Do Reported Motives Match Reported Rewards?
One of the most interesting things that can be checked for consistency is
the relationship between reported motives and reported rewards. When
asking people for their motives behind any action, one has to be aware
that answers are not necessarily accurate, for several reasons:

38 Rishab Aiyer Ghosh

0

1–2

3–5

6–10

11–15

16–20

21–30

31–40

41–50

N
u

m
b

e
r

o
f

R
e

g
u

la
r

C
o

n
ta

c
ts

 t
o

O
th

e
r

O
S

/F
S

 D
e

v
e

lo
p

e
rs

4.6

0.4

0.8

2.7

3.6

5.2

14.8

24.4

26.1

17.4

More than 50

Figure 2.8
Regular contact with other developers, percentage of respondents

� People are not conscious of their motives all the time.
� People might suppress some motives in preference for others, either
unconsciously or deliberately, because of what they believe are the
“correct” motives—this effect may be less striking in an anonymous Web
survey than in a face-to-face interview, but probably still exists.
� People might report some motives but not others—especially when there
are multiple motives, some that are “necessary but not sufficient” might
be ignored.

This is certainly true for respondents to the FLOSS developer survey. But
it is possible to get a truer understanding of respondents’ motives by com-
paring reported motives to reported rewards. We assume that people who
develop free software for a given motive (for example, to earn money) also
report an above-average incidence of related rewards (above-average
income). Not all motives have rewards that can be directly measured—
most don’t. Certainly, rewards generally result after a considerable time
lapse, and such rewards would become apparent only through repeated
panel surveys. But there is some degree of consistency control that can be
performed within a single survey.

The first thing that comes to mind is whether there is any difference
in reported income levels across motivation categories (as described
previously), and whether motive category is reflected in earnings from
participation in free software development. Figure 2.9 shows whether
respondents from different motive classes earned income directly from
FLOSS, indirectly only, or not at all. Figure 2.10 shows the mean income
levels for motive classes (respondents were not asked for their level of
income from FLOSS, so this reflects income from all sources).

Clearly, there is a strong indication that those who report career and
monetary motives get what they want; that is, they report a low level of
not earning income from FLOSS and high level of earning directly from
FLOSS, as compared with other motive classes. In contrast, the politically
motivated are least likely to earn any income, direct or indirect, from
FLOSS. It is interesting to note that although those with purely product-
related motives (such as distributing software that they could not market
in a proprietary way, or looking at FLOSS as a method of implementing an
idea) are less likely to earn money from FLOSS than other groups, they
earn the most, on average (see figure 2.10). This is consistent with, as an
example, a picture of software professionals with proprietary software as a
(large) income source who turn to this development mode to solve a tech-
nical or product-related problem.

Understanding Free Software Developers 39

40 Rishab Aiyer Ghosh

Motive class

social/community career/monetary political product-related all motives

P
e
rc

e
n

ta
g

e
 (

o
f

to
ta

l
in

 m
o

ti
v
e
 c

la
s
s
)

0

10

20

30

40

50

60

Directly from F/OSS
Only indirect earning
No earning from F/OSS

Figure 2.9
Earning from FLOSS by motive class

3500.00

3000.00

2500.00

2000.00

1500.00

1000.00

500.00

0.00

Motive class

social/community career/monetary political product-related

M
e

a
n

 m
o

n
th

ly
 i

n
c
o

m
e

o
r

$

Figure 2.10
Income by motive class

Figure 2.11 compares other possible reward indicators by motive class.
These could possibly be treated as proxies for social or community-type
rewards. While it seems clear that those motivated by career or monetary
concerns get above-average levels of the appropriate sort of reward, the
picture is blurred for the social/community and political motive class (at
least from this set of indicators; there are many other candidates from the
FLOSS survey). From this figure, it is apparent that social/community-
driven and career/monetary-driven developers have similar levels of
involvement in past and current projects as well as leadership of projects.
(It should be emphasized that the career/monetary class includes those
who did not explicitly state they wanted to earn money—those who were
only interested in, for instance, reputation and possible job prospects form
the largest share of this group.) What is striking is that the career/
monetary group has a much higher level of regular contact with other
developers than other groups do, possibly indicating that they are suc-
cessful in developing the reputation that they value.

One “reward” indicator, in the sense that it sheds light on developers’
perception of the sort of community to which they belong, is the Hobbes
measure shown in figure 2.12. The Hobbes measure ranges from -1 (all
others are altruistic) to +1 (all others are selfish). This indicator was

Understanding Free Software Developers 41

Indicators

all projects current projects contacts with others leader of projects

N
u

m
b

e
r

(m
e

a
n

)

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Social/community
Career/monetary
Political
Product-related

Figure 2.11
Social activity rewards by motive class

calculated using a similar method to the “selfishness measure,” in the form
of the statement about other developers that “they give less than/more
than/the same as they take” in relationship to the developer community.
By and large, respondents were more likely to see other developers as
altruistic and themselves as selfish. Unsurprisingly, the chart shows that a
majority thought other developers in general are not altruistic, and notably
more from the career/monetary group assumed that other developers are
selfish than from any other group.

Developers motivated purely for product reasons have the most utopian
view of the community, possibly because they feel for others, as they do
for themselves (as the least “selfish” group, as seen previously), that there
is more being put into the community than taken out of it.

Other Data Sources

It has already been shown for some variables that more objective data
sources can corroborate the subjective data provided by respondents to
the FLOSS developer survey. While a comparison of these data is beyond
the scope of this text, the FLOSS source code scan (Ghosh et al. 2002,
part V), the Orbiten Survey (Ghosh and Ved Prakash 2000) and the
LICKS project (Ghosh and David 2003) provide extensive presentations of
data on an aggregate level, especially on developer participation in and
leadership of projects, that can be compared with subjective survey
responses.

42 Rishab Aiyer Ghosh

S
e
lf

is
h

n
e
s
s
 o

f
o

th
e
rs

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Motive class

social/community career/monetary political product-related

Figure 2.12
Others’ selfishness—“Hobbes measure”—by motive class

Conclusion

This chapter has presented some of the most interesting findings from
the FLOSS developer survey. These findings highlight the crucial role that
empirical data must play in the formation of models and hypotheses
regarding the creation, organization, and activity of the free software devel-
oper community. The study also shows the utility of empirical data even
when it is not possible to fully provide high levels of statistical accuracy,
due to the unavailability of accurate data sources and census-type infor-
mation on the universal population of developers.

Hopefully, this chapter provides the impetus for the process of using
multiple sources of subjective and objective inputs on developer activity
to better understand the motivations—and assess the rewards—behind the
participation of individuals in this fascinating form of value production
and exchange.

Notes

The FLOSS project was funded by the European Union’s 5th Framework Programme

(IST). The FLOSS consortium comprised the International Institute of Infonom-

ics/University of Maastricht and Berlecon Research, Berlin. In addition to this

author, Ruediger Glott, Bernhard Krieger, and Gregorio Robles were members of the

Infonomics FLOSS team. Detailed results, the full questionnaire and analysis are in

the FLOSS report (Ghosh et al. 2002, part IV).

1. This paper uses the terms free software, open source software, and libre software

interchangeably, except where a specific distinction is made clear in the text. Most

often the term FLOSS is used (Free/Libre/Open Source Software). Although it was

originally a project title rather than a generic neutral term for the class of software,

many commentators and writers have adopted FLOSS as such a term since the

publication of the final FLOSS project report in July 2002. It should be noted that

despite the media and policy focus on “Open Source” (in English, at least), free

software is a more popular term among developers themselves—see http://

flossproject.org/floss1/stats_1.htm.

2. Models and hypotheses are legion: “cooking-pot market” (Ghosh 1998a);

“bazaar” (Raymond 2001); “gift exchange” (Barbrook 1998); “users turning pro-

ducer” (von Hippel 2001a); “rational—signalling” (Lerner and Tirole 2002); “peer

production” (Benkler 2002).

3. Such indicators may objectively answer at least part of the question about defin-

ing transactions: “who is doing how much of what with whom” seems to fall apart

when the “how much” is no longer monetary, apparently eliminating the need for

Understanding Free Software Developers 43

actors to record their transactions. Nonmonetary indicators are described in more

detail in Ghosh 2005 and a methodology for extracting them in an objective form

from free software source code is detailed in Ghosh 2002.

4. A study of the distribution of code productivity among developers was first per-

formed in the Orbiten survey (Ghosh and Ved Prakash 2000) by studying a sample

of source code, and also using a different method based on annotations provided

by developers in a large software archive (see Dempsey et al. 2002). Since then,

statistics from developer portals such as Sourceforge.net provide at least the order

of magnitude of the total developer population, if not accurate population size or

demographic estimates.

5. In comparison to broader surveys (FLOSS; Robles-Martínez et al. 2001, which

includes more than 5,000 respondents; Dempsey et al. 2002), the BCG survey (chap.

1, this volume) showed a higher degree of U.S. participants, more developers with

several years of experience, and less animosity towards proprietary software com-

panies. This may be related to the preselection criteria, which specifically included

developers in mature projects on Sourceforge.net, a U.S.-based, open source portal.

A sample that included, say, low-contribution developers on Savannah—a Free Soft-

ware Foundation portal and hence more politically conscious—could have led to

fairly different results.

6. See note 4.

7. Ghosh et al. 2002, part I. This survey of 1,452 industrial and public sector orga-

nizations in Europe on their use of open source software is beyond the scope of this

paper. However, the FLOSS user survey did query organizations on their motivations

for use, and also their support of developers, corroborating some of the results of

the FLOSS developer survey.

8. Ghosh and Ved Prakash 2000; Ghosh 2002; Ghosh et al. 2002, part V; Ghosh and

David 2003.

9. There have been small-scale studies of the organizational structure of the Apache,

Jabber, Mozilla and other projects.

10. Ghosh and David 2003.

11. We assumed that developers can answer the survey in English, though—we

didn’t have the budget for a multilingual survey. As a result, we expect that we have

an underrepresentation of east Asian and possibly Latin American developers.

12. See the FLOSS report, “Part IVa: Survey of Developers—Annexure on validation

and methodology.”

13. Ghosh 1994; Ghosh 1995; Ghosh 1998a.

14. Barbrook 1998.

44 Rishab Aiyer Ghosh

15. Lerner and Tirole 2002.

16. Ghosh 2005.

17. Another way of looking at this is: if the selfish response is +1 and the altruistic

response is -1 (the balanced response “I give as much as I take” is 0), then the

“selfishness measure” is the mean of all responses.

18. In this context, the Gini coefficient measures the concentration of distribution:

0.0 represents uniform distribution (equal contribution from all participants), and

1.0 indicates full concentration (one participant contributes everything). The value

here is for Linux kernel version 2.5.25, taken from the LICKS study of three versions

of the kernel; see Ghosh and David 2003 for details.

19. The Orbiten survey (Ghosh and Ved Prakash 2000) and the FLOSS source code

survey (Ghosh et al. 2002, part V) measured authorship of source code; Dempsey

et al. 2002 analysed data from the Linux Software Map.

20. Lorenz curves, which plot authors’ cumulative share of contribution and are the

basis for Gini coefficients; for an example of their use in analyzing concentration

of contribution in the Linux kernel, see Ghosh and David 2003.

Understanding Free Software Developers 45

3 Economic Perspectives on Open Source

Josh Lerner and Jean Tirole

Introduction

In recent years, there has been a surge of interest in open source software
development. Interest in this process, which involves software developers
at many different locations and organizations sharing code to develop and
refine software programs, has been spurred by three factors:

� The rapid diffusion of open source software. A number of open source prod-
ucts, such as the Apache web server, dominate product categories. In the
personal computer operating system market, International Data Corpora-
tion estimates that the open source program Linux has from seven to
twenty-one million users worldwide, with a 200 percent annual growth
rate. Many observers believe it represents a leading challenger to Microsoft
Windows in this important market segment.
� The significant capital investments in open source projects. Over the past
two years, numerous major corporations, including Hewlett-Packard, IBM,
and Sun Microsystems, have launched projects to develop and use open
source software. Meanwhile, a number of companies specializing in
commercializing Linux, such as Red Hat, have completed initial public
offerings, and other open source companies such as Cobalt Net-
works, Collab.Net, Scriptics, and Sendmail have received venture capital
financing.
� The new organization structure. The collaborative nature of open source
software development has been hailed in the business and technical press
as an important organizational innovation.

To an economist, the behavior of individual programmers and com-
mercial companies engaged in open source processes is startling. Consider
these quotations by two leaders of the free software and open source
communities:

The idea that the proprietary software social system—the system that says you are

not allowed to share or change software—is unsocial, that it is unethical, that it is

simply wrong may come as a surprise to some people. But what else can we say

about a system based on dividing the public and keeping users helpless? (Stallman

1999a, 54)

The “utility function” Linux hackers are maximizing is not classically economic, but

is the intangible of their own ego satisfaction and reputation among other hackers.

[Parenthetical comment deleted.] Voluntary cultures that work this way are actually

not uncommon; one other in which I have long participated is science fiction

fandom, which unlike hackerdom explicitly recognizes “egoboo” (the enhancement

of one’s reputation among other fans). (Raymond 2001, 564–565)

It is not initially clear how these claims relate to the traditional view of
the innovative process in the economics literature. Why should thousands
of top-notch programmers contribute freely to the provision of a public
good? Any explanation based on altruism1 only goes so far. While users in
less developed countries undoubtedly benefit from access to free software,
many beneficiaries are well-to-do individuals or Fortune 500 companies.
Furthermore, altruism has not played a major role in other industries, so
it remains to be explained why individuals in the software industry are
more altruistic than others.

This chapter seeks to make a preliminary exploration of the economics
of open source software. Reflecting the early stage of the field’s devel-
opment, we do not seek to develop new theoretical frameworks or to
statistically analyze large samples. Rather, we seek to draw some initial
conclusions about the key economic patterns that underlie the open source
development of software. (See table 3.1 for the projects we studied.) We
find that much can be explained by reference to economic frameworks.
We highlight the extent to which labor economics—in particular, the lit-
erature on “career concerns”—and industrial organization theory can
explain many of the features of open source projects.

At the same time, we acknowledge that aspects of the future of open
source development process remain somewhat difficult to predict with
“off-the-shelf” economic models. In the final section of this chapter, we
highlight a number of puzzles that the movement poses. It is our hope
that this chapter will itself have an “open source” nature: that it will stim-
ulate research by other economic researchers as well.

Finally, it is important to acknowledge the relationship with the earlier
literature on technological innovation and scientific discovery. The open
source development process is somewhat reminiscent of “user-driven inno-
vation” seen in many other industries. Among other examples, Rosenberg’s

48 Josh Lerner and Jean Tirole

(1976b) studies of the machine tool industry and von Hippel’s (1988)
studies of scientific instruments have highlighted the role that sophisti-
cated users can play in accelerating technological progress. In many
instances, solutions developed by particular users for individual problems
have become more general solutions for wide classes of users. Similarly,
user groups have played an important role in stimulating innovation in
other settings; certainly, this has been the case since the earliest days in
the computer industry (e.g., Caminer et al. 1996).

A second strand of related literature examines the adoption of the
scientific institutions (“open science,” in Dasgupta and David’s (1994)
terminology) within for-profit organizations. Henderson and Cockburn
(1994) and Gambardella (1995) have highlighted that the explosion of

Economic Perspectives on Open Source 49

Table 3.1
The open source programs studied

Program Apache Perl Sendmail

Nature of World Wide Web System Internet mail

program (HTTP) server administration and transfer agent

programming

language

Year of 1994 1987 1979 (predecessor

introduction program)

Governing Apache Software Selected Sendmail

body Foundation programmers Consortium

(among the “perl-5-

porters”)

(formerly

the Perl Institute)

Competitors Internet Information Java (Sun); Exchange

Server (Microsoft); Python (open (Microsoft)

various servers source program); IMail (Ipswitch);

(Netscape) Visual Basic, Post.Office

ActiveX (Microsoft) (Software.com)

Market 55% Estimated to have Handles ~80

penetration (September 1999) one million users percent of

(of publicly observable Internet e-mail

sites only) traffic

Web site: http://www.apache.org http://www.perl.org http://www.

sendmail.com

knowledge in biology and biochemistry in the 1970s triggered changes in
the management of research and development in major pharmaceutical
firms. In particular, a number of firms encouraged researchers to pursue
basic research, in addition to the applied projects that typically character-
ized these organizations. These firms that did so enjoyed substantially
higher research and development productivity than their peers, apparently
because the research scientists allowed them to more accurately identify
promising scientific developments (in other words, their “absorptive capac-
ity” was enhanced) and because the interaction with cutting-edge research
made these firms more attractive to top scientists. At the same time, the
encouragement of “open science” processes has not been painless.
Cockburn, Henderson, and Stern (1999) highlight the extent to which
encouraging employees to pursue both basic and applied research led to
substantial challenges in designing incentive schemes, because of the very
different outputs of each activity and means through which performance
is measured.2

But as we shall argue, certain aspects of the open source process—espe-
cially the extent to which contributors’ work is recognized and rewarded—
are quite distinct from earlier settings. This study focuses on understanding
this contemporaneous phenomenon rather than making a general evalu-
ation of the various cooperative schemes employed over time.

The Nature of Open Source Software

While media attention to the phenomenon of open source software has
been only recent, the basic behaviors are much older in origin. There has
long been a tradition of sharing and cooperation in software development.
But in recent years, both the scale and formalization of the activity have
expanded dramatically with the widespread diffusion of the Internet.3 In
the following discussion, we highlight three distinct eras of cooperative
software development.

The First Era: The Early 1960s to the Early 1980s
Many of the key aspects of the computer operating systems and the Inter-
net were developed in academic settings such as Berkeley and MIT during
the 1960s and 1970s, as well as in central corporate research facilities where
researchers had a great deal of autonomy (such as Bell Labs and Xerox’s
Palo Alto Research Center). In these years, programmers from different
organizations commonly shared basic operating code of computer pro-
grams—source code.4

50 Josh Lerner and Jean Tirole

Many of the cooperative development efforts in the 1970s focused on
the development of an operating system that could run on multiple com-
puter platforms. The most successful examples, such as Unix and the C
language used for developing Unix applications, were originally developed
at AT&T’s Bell Laboratories. The software was then installed across insti-
tutions, either for free or for a nominal charge. Further innovations were
made at many of the sites where the software was installed, and were in
turn shared with others. The process of sharing code was greatly acceler-
ated with the diffusion of Usenet, a computer network begun in 1979 to
link together the Unix programming community. As the number of sites
grew rapidly, the ability of programmers in university and corporate set-
tings to rapidly share technologies was considerably enhanced.

These cooperative software development projects were undertaken on a
highly informal basis. Typically no effort to delineate property rights or to
restrict reuse of the software were made. This informality proved to be
problematic in the early 1980s, when AT&T began enforcing its (purported)
intellectual property rights related to Unix.

The Second Era: The Early 1980s to the Early 1990s
In response to these threats of litigation, the first efforts to formalize the
ground rules behind the cooperative software development process
emerged. This movement ushered in the second era of cooperative soft-
ware development. The critical institution during this period was the Free
Software Foundation, begun by Richard Stallman of the MIT Artificial Intel-
ligence Laboratory in 1983. The foundation sought to develop and dis-
seminate a wide variety of software without cost.

One important innovation introduced by the Free Software Foundation
was a formal licensing procedure that aimed to preclude the assertion of
patent rights concerning cooperatively developed software (as many
believed that AT&T had done in the case of Unix). In exchange for being
able to modify and distribute the GNU (a “recursive acronym” standing
for “GNU’s not Unix”), software, software developers had to agree to make
the source code freely available (or at a nominal cost). As part of the
General Public License (GPL, also known as “copylefting”), the user also
had to agree not to impose licensing restrictions on others. Furthermore,
all enhancements to the code—and even code that intermingled the coop-
eratively developed software with separately created software—had to be
licensed on the same terms. It is these contractual terms that distinguish
open source software from shareware (where the binary files but not the
underlying source code are made freely available, possibly for a trial period

Economic Perspectives on Open Source 51

only) and public-domain software (where no restrictions are placed on sub-
sequent users of the source code).5

This project, as well as contemporaneous efforts, also developed a
number of important organizational features. In particular, these projects
employed a model where contributions from many developers were
accepted (and frequently publicly disseminated or posted). The official
version of the program, however, was managed or controlled by a smaller
subset of individuals closely involved with the project, or in some cases,
by an individual leader. In some cases, the project’s founder (or a desig-
nated successor) served as the leader; in others, leadership rotated between
various key contributors.

The Third Era: The Early 1990s to Today
The widespread expansion of Internet access in the early 1990s led to a
dramatic acceleration of open source activity. The volume of contributions
and diversity of contributors expanded sharply, and numerous new open
source projects emerged, most notably Linux (an operating system devel-
oped by Linus Torvalds in 1991). As discussed in detail next, interactions
between commercial companies and the open source community also
became commonplace in the 1990s.

Another innovation during this period was the proliferation of alterna-
tive approaches to licensing cooperatively developed software. During the
1980s, the GPL was the dominant licensing arrangement for cooperatively
developed software. This situation changed considerably during the
1990s. In particular, Debian, an organization set up to disseminate
Linux, developed the “Debian Free Software Guidelines” in 1995. These
guidelines allowed licensees greater flexibility in using the program, in-
cluding the right to bundle the cooperatively developed software with
proprietary code. These provisions were adopted in early 1997 by a number
of individuals involved in cooperative software development, and
were subsequently dubbed the “Open Source Definition.” As the authors
explained:

License Must Not Contaminate Other Software

The license must not place restrictions on other software that is distributed along

with the licensed software. For example, the license must not insist that all other

programs distributed on the same medium must be open-source software. Rationale:

Distributors of open-source software have the right to make their own choices about

their own software (Open Source Initiative 1999).

52 Josh Lerner and Jean Tirole

These new guidelines did not require open source projects to be “viral”:
they need not “infect” all code that was compiled with the software with
the requirement that it be covered under the license agreement as well.
At the same time, they also accommodated more restrictive licenses, such
as the GPL.

The past few years have seen unprecedented growth of open source soft-
ware. At the same time, the movement has faced a number of challenges.
We highlight two of these here: the “forking” of projects (the development
of competing variations) and the development of products for high-end
users.

The first of these two issues has emerged in a number of open source
projects: the potential for programs to splinter into a number of variants.
In some cases, passionate disputes over product design have led to such
splintering of open source projects. Examples of such splintering occurred
with the Berkeley Unix program and Sendmail during the late 1980s.

Another challenge has been the apparently lesser emphasis on docu-
mentation and support, user interfaces,6 and backward compatibility in at
least some open source projects. The relative technological features of soft-
ware developed in open source and traditional environments are a matter
of passionate discussion. Some members of the community believe that
this production method dominates traditional software development in all
respects. But many open source advocates argue that open source software
tends to be geared to the more sophisticated users.7 This point is made
colorfully by one open source developer:

[I]n every release cycle Microsoft always listens to its most ignorant customers. This

is the key to dumbing down each release cycle of software for further assaulting the

non-personal-computing population. Linux and OS/2 developers, on the other

hand, tend to listen to their smartest customers. . . . The good that Microsoft does in

bringing computers to non-users is outdone by the curse that they bring on expe-

rienced users (Nadeau 1999).

Certainly, the greatest diffusion of open source projects appears to be in
settings where the end users are sophisticated, such as the Apache server
installed by systems administrators. In these cases, users are apparently
more willing to tolerate the lack of detailed documentation or easy-to-
understand user interfaces in exchange for the cost savings and the per-
mission to modify the source code themselves. In several projects, such as
Sendmail, project administrators chose to abandon backward compatibil-
ity in the interests of preserving program simplicity.8 One of the rationales
for this decision was that administrators using the Sendmail system were

Economic Perspectives on Open Source 53

responsive to announcements that these changes would be taking place,
and rapidly upgraded their systems. In a number of commercial software
projects, it has been noted, these types of rapid responses are not as
common. Once again, this reflects the greater sophistication and aware-
ness of the users of open source software.

The debate about the ability of open source software to accommodate
high-end users’ needs has direct implications for the choice of license. The
recent popularity of more liberal licenses and the concomitant decline of
the GNU license are related to the rise in the “pragmatist” influence. These
individuals believe that allowing proprietary code and for-profit activities
in segments that would otherwise be poorly served by the open source
community will provide the movement with its best chance for success.

Who Contributes?
Computer system administrators, database administrators, computer pro-
grammers, and other computer scientists and engineers occupied about 2.1
million jobs in the United States in 1998. (Unless otherwise noted, the
information in this paragraph is from U.S. Department of Labor 2000.)
A large number of these workers—estimated at between five and ten
percent—are either self-employed or retained on a project-by-project
basis by employers. Computer-related positions are projected by the federal
government to be among the fastest-growing professions in the next
decade.

The distribution of contributors to open source projects appears to be
quite skewed. This is highlighted by an analysis of 25 million lines of open
source code, constituting 3,149 distinct projects (Ghosh and Ved Prakash
2000). The distribution of contributions is shown in figure 3.1. More than
three-quarters of the nearly 13,000 contributors made only one contribu-
tion; only one in twenty-five had more than five contributions. Yet the top
decile of contributors accounted for fully 72 percent of the code con-
tributed to the open source projects, and the top two deciles for 81 percent
(see figure 3.2). This distribution would be even more skewed if those who
simply reported errors, or “bugs,” were considered: for every individual
who contributes code, five will simply report errors (Valloppillil, 1998). To
what extent this distribution is unique to open source software is unclear:
the same skewness of output is also observed among programmers
employed in commercial software development facilities (e.g., see Brooks
1995 and Cusumano 1991), but it is unclear whether these distributions
are similar in their properties.

54 Josh Lerner and Jean Tirole

The overall picture that we drew from our interviews and from the
responses we received in reaction to the first draft of the paper is that the
open source process is quite elitist. Important contributors are few and
ascend to the “core group” status, the ultimate recognition by one’s peers.
The elitist view is also supported by Mockus, Fielding, and Herbsleb’s
(2000) study of contributions to Apache. For Apache, the (core) “develop-
ers mailing list” is considered as the key list of problems to be solved, while
other lists play a smaller role. The top 15 developers contribute 83 percent
to 91 percent of changes (problem reports by way of contrast offer a much
less elitist pattern).

Some evidence consistent with the suggestion that contributions to open
source projects are being driven by signaling concerns can be found in the
analysis of contributors to a long-standing archive of Linux postings main-
tained at the University of North Carolina by Dempsey et al. 1999. These
authors examine the suffix of the contributors’ e-mail addresses. While the
location of many contributors cannot be precisely identified (for instance,
contributors at “.com” entities may be located anywhere in the world), the

Economic Perspectives on Open Source 55

9617

1924

928

211
25

1

2

3–5

6–24

>25

Figure 3.1
Distribution of contributions by participant (Ghosh and Prakash 2000)

results are nonetheless suggestive. As figure 3.3 depicts, 12 percent of the
contributors are from entities with an “.edu” suffix (typically, U.S. educa-
tional institutions), 7 percent from “.org” domains (traditionally reserved
from U.S. nonprofits), 37 percent are from Europe (with suffixes such as
“.de” and “.uk”), and 11 percent have other suffixes, many of which rep-
resent other foreign countries. This suggests that many of the contribu-
tions are coming from individuals outside the major software centers.

What Does Economic Theory Tell Us about Open Source?

This section and the next use economic theory to shed light on three key
questions: Why do people participate?9 Why are there open source pro-
jects in the first place? And how do commercial vendors react to the open
source movement?

What Motivates Programmers?
A programmer participates in a project, whether commercial or open
source, only if he or she derives a net benefit from engaging in the activ-

56 Josh Lerner and Jean Tirole

Top decile

2nd decile

3rd decile

4th decile

Does not include 9% of code, where contrbutor could not be identified.

5th decile
6th decile
7th decile
8th decile
9th decile
10th decile

Figure 3.2
Distribution of code contributed by decile: Does not include 9 percent of code where

contributor could not be identified. (Ghosh and Prakash 2000)

ity. The net benefit is equal to the immediate payoff (current benefit minus
current cost) plus the delayed payoff (delayed benefit minus delayed cost).

A programmer working on an open source software development project
incurs a variety of benefits and costs. The programmer incurs an opportu-
nity cost of time. While is working on this project, a programmer is unable
to engage in another programming activity. This opportunity cost exists at
the extensive and intensive margins. First, programmers who would work
as independents on open source projects would forgo the monetary com-
pensation they would receive working for a commercial firm or a univer-
sity. Second, and more to the point, for a programmer with an affiliation
with a commercial company, a university or research lab, the opportunity
cost is the cost of not focusing on the primary mission. For example, the
academic’s research output might sag, and the student’s progress towards
a degree slow down; these examples typify delayed costs. The size of this
opportunity cost of not focusing on the primary mission of course depends
on the extent of monitoring by the employer and, more generally, the pres-
sure on the job.

Two immediate benefits might counter this cost. First, programmers,
when fixing a bug or customizing an open source program, might actually
improve rather than reduce their performance in the mission endowed

Economic Perspectives on Open Source 57

Europe

com

edu

net

org

Other

Figure 3.3
Suffix of Linux contributors’ e-mail (Dempsey et al. 1999)

upon them by their employer. This is particularly relevant for system
administrators looking for specific solutions for their company. Second, the
programmer compares the enjoyability of the mission set by the employer
and the open source alternative. A “cool” open source project might be
more fun than a routine task.

The delayed reward covers two distinct, although hard-to-distinguish,
incentives. The career concern incentive refers to future job offers, shares in
commercial open source-based companies,10 or future access to the venture
capital market.11 The ego gratification incentive stems from a desire for peer
recognition. Probably most programmers respond to both incentives.
There are some differences between the two. The programmer mainly pre-
occupied by peer recognition may shun future monetary rewards, and may
also want to signal his or her talent to a slightly different audience than a
programmer motivated by career concerns. From an economic perspective,
however, the incentives are similar in most respects. We group the career
concern incentive and the ego gratification incentive under a single
heading: the signaling incentive.

Economic theory (e.g., Holmström 1999) suggests that this signaling
incentive is stronger,

1. the more visible the performance to the relevant audience (peers, labor
market, venture capital community)
2. the higher the impact of effort on performance
3. the more informative the performance about talent

The first condition gives rise to what economists call “strategic comple-
mentarities.” To have an “audience,” programmers will want to work on
software projects that will attract a large number of other programmers.
This suggests the possibility of multiple equilibria. The same project might
attract few programmers because programmers expect that others will not
be interested; or it may flourish as programmers (rationally) have faith in
the project.

The same point applies to forking in a given open source project. Open
source processes are in this respect quite similar to academic research. The
latter is well known to exhibit fads: see the many historical examples of
simultaneous discoveries discussed by Merton (1973). Fields are completely
neglected for years, while others with apparently no superior intrinsic
interest attract large numbers of researchers. Fads in academia are frowned
upon for their inefficient impact on the allocation of research. It should
not be ignored, however, that fads also have benefits. A fad can create a
strong signaling incentive: researchers working in a popular area may be

58 Josh Lerner and Jean Tirole

highly motivated to produce a high-quality work, since they can be con-
fident that a large audience will examine their work.12

Turning to the leadership more specifically, it might still be a puzzle that
the leader initially releases valuable code to the community.13 Despite the
substantial status and career benefits of being a leader of an important open
source project, it would seem that most would not resist the large mone-
tary gains from taking a promising technology private. We can only con-
jecture as to why this is not the case. One possibility is that taking the
technology private might meet layers of resistance within the leader’s
corporation. To the extent that the innovation was made while working
in-house, the programmer must secure a license from the employer;14 and
the company, which does not want to lose a key programmer, might not
be supportive of the request. Another possibility is that the open source
process may be a more credible way of harnessing energies when fighting
against a dominant player in the industry.

Comparison between Open Source and Closed Source Programming
Incentives
To compare programmers’ incentives in the open source and proprietary
settings, we need to examine how the fundamental features of the two
environments shape the incentives just reviewed. We first consider the
relative short-term rewards, and then turn to the deferred compensation.

Commercial projects have an edge on the current compensation dimen-
sion because the proprietary nature of the code generates income, which
makes it worthwhile for private companies to offer salaries.15 This con-
tention is the old argument in economics that the prospect of profit
encourages investment, which is used, for instance, to justify the award-
ing of patents to encourage invention.

By way of contrast, an open source project might well lower the cost for
the programmer, for two reasons:

1. “Alumni effect”: Because the code is freely available to all, it can be used
in schools and universities for learning purposes; so it is already familiar
to programmers. This reduces their cost of programming for Unix, for
example.16

2. Customization and bug-fixing benefits: The cost of contributing to an open
source project can be offset if the activity brings about a private benefit
(bug fixing, customization) for the programmer and his or her firm. Note
again that this factor of cost reduction is directly linked to the openness
of the source code.17

Economic Perspectives on Open Source 59

Let us now turn to the delayed reward (signaling incentive) component.
In this respect too, the open source process has some benefits over the
closed source approach. As we noted, signaling incentives are stronger, the
more visible the performance and the more attributable the performance
to a given individual. Signaling incentives therefore may be stronger in the
open source mode for three reasons:

1. Better performance measurement: Outsiders can observe only inexactly the
functionality and/or quality of individual elements of a typical commer-
cially developed program, as they are unable to observe the proprietary
source code. By way of contrast, in an open source project, the outsiders
are able to see not only what the contribution of each individual was and
whether that component “worked,” but also whether the task was hard,
whether the problem was addressed in a clever way, whether the code can
be useful for other programming tasks in the future, and so forth.
2. Full initiative: The open source programmer is his or her own boss and
takes full responsibility for the success of a subproject. In a hierarchical
commercial firm, though, the programmer’s performance depends on a
supervisor’s interference, advice, and so on. Economic theory predicts that
the programmer’s performance is more precisely measured in the former
case.18

3. Greater fluidity: It may be argued that the labor market is more fluid in
an open source environment. Programmers are likely to have less idiosyn-
cratic, or firm-specific, human capital that limits shifting one’s efforts to a
new program or work environment. (Since many elements of the source
code are shared across open source projects, more of the knowledge they
have accumulated can be transferred to the new environment.)

These theoretical arguments also provide insights as to who is more likely
to contribute and what tasks are best suited to open source projects. Sophis-
ticated users derive direct benefits when they customize or fix a bug in
open source software.19 A second category of potential contributors con-
sists of individuals with strong signaling incentives; these contributors
might use open source software as a port of entry. For instance, open source
processes may give a talented system administrator at a small academic
institution (who is also a user!) a unique opportunity to signal talent to
peers, prospective employers, and the venture capital community.20

As to the tasks that may appeal to the open source community, one
would expect that tasks such as those related to the operating systems and
programming languages, whose natural audience is the community of pro-
grammers, would give rise to strong signaling incentives. (For instance, the

60 Josh Lerner and Jean Tirole

use of Perl is largely restricted to system administrators.) By way of con-
trast, tasks aiming at helping the much less sophisticated end user—design
of easy-to-use interfaces, technical support, and ensuring backward com-
patibility—usually provide lower signaling incentives.21

Evidence on Individual Incentives
A considerable amount of evidence is consistent with an economic per-
spective. First, user benefits are key to a number of open source projects.
One of the origins of the free software movement was Richard Stallman’s
inability to improve a printer program because Xerox refused to release the
source code. Many open source project founders were motivated by infor-
mation technology problems that they had encountered in their day-to-
day work. For instance, in the case of Apache, the initial set of contributors
was almost entirely system administrators who were struggling with the
same types of problems as Brian Behlendorf. In each case, the initial release
was “runnable and testable”: it provided a potential, if imperfect, solution
to a problem that was vexing data processing professionals.

Second, it is clear that giving credit to authors is essential in the open
source movement. This principle is included as part of the nine key require-
ments in the “Open Source Definition” (Open Source Initiative 1999). This
point is also emphasized by Raymond 2001, who points out “surrepti-
tiously filing someone’s name off a project is, in cultural context, one of
the ultimate crimes.”

More generally, the reputational benefits that accrue from successful con-
tributions to open source projects appear to have real effects on the devel-
opers. This is acknowledged within the open source community itself. For
instance, according to Raymond 2001, the primary benefits that accrue to
successful contributors of open source projects are “good reputation among
one’s peers, attention and cooperation from others . . . [and] higher status
[in the] . . . exchange economy.” Thus, while some of benefits conferred
from participation in open source projects may be less concrete in nature,
there also appear be quite tangible—if delayed—rewards.

The Apache project provides a good illustration of these observations.
The project makes a point of recognizing all contributors on its web site—
even those who simply identify a problem without proposing a solution.
Similarly, the organization highlights its most committed contributors,
who have the ultimate control over the project’s evolution. Moreover, it
appears that many of the skilled Apache programmers have benefited mate-
rially from their association with the organization. Numerous contributors
have been hired into Apache development groups within companies such

Economic Perspectives on Open Source 61

as IBM, become involved in process-oriented companies such as Collab.Net
that seek to make open source projects more feasible (see following dis-
cussion), or else moved into other Internet tools companies in ways that
were facilitated by their expertise and relationships built up during their
involvement in the open source movement. Meanwhile, many of the new
contributors are already employed by corporations and working on Apache
development as part of their regular assignments.

There is also substantial evidence that open source work may be a good
stepping stone for securing access to venture capital. For example, the
founders of Sun, Netscape, and Red Hat had signaled their talent in the
open source world. In table 3.2, we summarize some of the subsequent
commercial roles played by individuals active in the open source
movement.

Organization and Governance
Favorable characteristics for open source production are (a) its modularity
(the overall project is divided into much smaller and well-defined tasks
(“modules”) that individuals can tackle independently from other tasks)
and (b) the existence of fun challenges to pursue.22 A successful open source

62 Josh Lerner and Jean Tirole

Table 3.2
Commercial roles played by selected individuals active in open source movement

Individual Role and company

Eric Allman Chief Technical Officer, Sendmail, Inc. (support for open

source software product)

Brian Behlendorf Founder, President, and Chief Technical Officer, Collab.Net

(management of open source projects)

Keith Bostic Founder and President, Sleepycat Software

L. Peter Deutsch Founder, Aladdin Enterprises (support for open source

software product)

William Joy Founder and Chief Scientist, Sun Microsystems (workstation

and software manufacturer)

Michael Tiemann Founder, Cygnus Solutions (open source support)

Linus Torvalds Employee, Transmeta Corporation (chip design company)

Paul Vixie President, Vixie Enterprises (engineering and consulting

services)

Larry Wall Employee, O’Reilly Media (software documentation

publisher)

project also requires a credible leader or leadership, and an organization
consistent with the nature of the process. Although the leader is often at
the origin a user who attempts to solve a particular program, the leader
over time performs less and less programming. The leader must provide a
“vision,” attract other programmers, and, last but not least, “keep the
project together” (prevent it from forking or being abandoned).

Initial Characteristics The success of an open source project is dependent
on the ability to break the project into distinct components. Without par-
celling out work in different areas to programming teams who need little
contact with one another, the effort is likely to be unmanageable. Some
observers argue that the underlying Unix architecture lent itself well to the
ability to break development tasks into distinct components. It may be
that as new open source projects move beyond their Unix origins and
encounter new programming challenges, the ability to break projects into
distinct units will be less possible. But recent developments in computer
science and programming languages (for example the development of
object-oriented programming) have encouraged further modularization,
and may facilitate future open source projects.

The initial leader must also assemble a critical mass of code to which the
programming community can react. Enough work must be done to show
that the project is possible and has merit. At the same time, to attract addi-
tional programmers, it may be important that the leader does not perform
too much of the job on his own and leaves challenging programming prob-
lems to others.23 Indeed, programmers will initially be reluctant to join a
project unless they identify an exciting challenge. Another reason why
programmers are easier to attract at an early stage is that, if successful, the
project will keep attracting a large number of programmers in the future,
making early contributions very visible.

Consistent with this argument, it is interesting to note that each of the
four cases described previously appeared to pose challenging programming
problems.24 At the initial release of each of these open source programs,
considerable programming problems were unresolved. The promise that
the project was not near a “dead end,” but rather would continue to attract
ongoing participation from programmers in the years to come, appears to
be an important aspect of its appeal.

In this respect, Linux is perhaps the quintessential example. The initial
Linux operating system was quite minimal, on the order of a few tens of
thousands of lines of code. In Torvalds’ initial postings, in which he sought
to generate interest in Linux, he explicitly highlighted the extent to which

Economic Perspectives on Open Source 63

the version would require creative programming in order to achieve full
functionality. Similarly, Larry Wall attributes the much of the success of
Perl to the fact that it “put the focus on the creativity of the programmer.”
Because it has a very limited number of rules, the program has evolved in
a variety of directions that were largely unanticipated when Wall initiated
the project.

Leadership
Another important determinant of project success appears to be the nature
of its leadership. In some respects, the governance structures of open source
projects are quite different. In a number of instances, including Linux,
there is an undisputed leader. While certain aspects are delegated to others,
a strong centralization of authority characterizes these projects. In other
cases, such as Apache, a committee resolves the disputes by voting or a
consensus process.

At the same time, leaders of open source projects share some common
features. Most leaders are the programmers who developed the initial code
for the project (or made another important contribution early in the
project’s development). While many make fewer programming contribu-
tions, having moved on to broader project management tasks, the indi-
viduals that we talked to believed that the initial experience was important
in establishing credibility to manage the project. The splintering of the
Berkeley-derived Unix development programs has been attributed in part
to the absence of a single credible leader.

But what does the leadership of an open source project do? It might
appear at first sight that the unconstrained, quasi-anarchistic nature of the
open source process leaves little scope for a leadership. This perception is
incorrect. While the leader has no “formal authority” (is unable to instruct
anyone to do anything), he or she has substantial “real authority” in suc-
cessful open source projects.25 That is, a leader’s “recommendations,”
broadly viewed, tend to be followed by the vast majority of programmers
working on the project. These recommendations include the initial
“vision” (agenda for work, milestones), the subsequent updating of goals
as the project evolves, the appointment of key leaders, the cajoling of pro-
grammers so as to avoid attrition or forking, and the overall assessment of
what has been and should be achieved. (Even though participants are free
to take the project where they want as long as they release the modified
code, acceptance by the leadership of a modification or addition provides
some certification as to its quality and its integration/compatibility with

64 Josh Lerner and Jean Tirole

the overall project. The certification of quality is quite crucial to the open
source project, because the absence of liability raises concerns among users
that are stronger than for commercial software, for which the vendor is
liable).

The key to a successful leadership is the programmers’ trust in the lead-
ership: that is, they must believe that the leader’s objectives are sufficiently
congruent with theirs and not polluted by ego-driven, commercial, or
political biases. In the end, the leader’s recommendations are only meant
to convey information to the community of participants. The recommen-
dations receive support from the community only if they are likely to
benefit the programmers; that is, only if the leadership’s goals are believed
to be aligned with the programmers’ interests.

For instance, the leadership must be willing to accept meritorious
improvements, even though they might not fit within the leader’s origi-
nal blueprint. Trust in the leadership is also key to the prevention of
forking. While there are natural forces against forking (the loss of
economies of scale due to the creation of smaller communities, the hesi-
tations of programmers in complementary segments to port to multiple
versions, and the stigma attached to the existence of a conflict), other
factors may encourage forking. User-developers may have conflicting
interests as to the evolution of the technology. Ego (signaling) concerns
may also prevent a faction from admitting that another approach is
more promising, or simply from accepting that it may socially be prefer-
able to have one group join the other’s efforts, even if no clear winner
has emerged. The presence of a charismatic (trusted) leader is likely to
substantially reduce the probability of forking in two ways. First, indeci-
sive programmers are likely to rally behind the leader’s preferred alterna-
tive. Second, the dissenting faction might not have an obvious leader of
its own.

A good leader should also clearly communicate its goals and evaluation
procedures. Indeed, the open source organizations go to considerable
efforts to make the nature of their decision making process transparent:
the process by which the operating committee reviews new software
proposals is frequently posted and all postings archived. For instance,
on the Apache web site, it is explained how proposed changes to the
program are reviewed by the program’s governing body, whose member-
ship is largely based on contributions to the project. (Any significant
change requires at least three “yes” votes—and no vetoes—by these key
decision-makers.)

Economic Perspectives on Open Source 65

Commercial Software Companies’ Reactions to the Open Source
Movement

This section examines the interface between open and closed source soft-
ware development. Challenged by the successes of the open source move-
ment, the commercial software corporations may employ one of two
strategies. The first is to emulate some incentive features of open source
processes in a distinctively closed source environment. Another is to try to
mix open and closed source processes to get the best of both worlds.

Why Don’t Corporations Duplicate the Open Source Incentives?
As we already noted, owners of proprietary code are not able to enjoy the
benefits of getting free programming training in schools and universities
(the alumni effect); nor can they easily allow users to modify their code
and customize it without jeopardizing intellectual property rights.

Similarly, and for the reasons developed earlier, commercial companies
will never be able to fully duplicate the visibility of performance reached
in the open source world. At most, they can duplicate to some extent some
of the signaling incentives of the open source world. Indeed, a number of
commercial software companies (for example, video game companies, and
Qualcomm, creators of the Eudora email program) list people who have
developed the software. It is an interesting question why others do not. To
be certain, commercial companies do not like their key employees to
become highly visible, lest they be hired away by competitors.26 But, to a
large extent, firms also realize that this very visibility enables them to
attract talented individuals and provides a powerful incentive to existing
employees.27

To be certain, team leaders in commercial software build reputations and
get identified with proprietary software just as they can on open source
projects; but the ability of reputations to spread beyond the leaders is more
limited, due to the nonverifiability of claims about who did what.28

Another area in which software companies might try to emulate open
source development is the promotion of widespread code sharing within
the company. This may enable them to reduce code duplication and to
broaden a programmer’s audience. Interestingly, existing organizational
forms may preclude the adoption of open source systems within commer-
cial software firms. An internal Microsoft document on open source
(Valloppillil 1998) describes a number of pressures that limit the im-
plementation of features of open source development within Microsoft.
Most importantly, each software development group appears to be largely

66 Josh Lerner and Jean Tirole

autonomous. Software routines developed by one group are not shared
with others. In some instances, the groups seek to avoid being broken up
by not documenting a large number of program features. These organiza-
tional attributes, the document suggests, lead to very complex and inter-
dependent programs that do not lend themselves to development in a
“compartmentalized” manner nor to widespread sharing of source code.29

The Commercial Software Companies’ Open Source Strategies
As should be expected, many commercial companies have undertaken
strategies (discussed in this section) to capitalize on the open source move-
ment. In a nutshell, they expect to benefit from their expertise in some
segment whose demand is boosted by the success of a complementary
open source program. While improvements in the open source software
are not appropriable, commercial companies can benefit indirectly in a
complementary proprietary segment.30

Living Symbiotically Off an Open Source Project One such strategy is
straightforward. It consists of commercially providing complementary
services and products that are not supplied efficiently by the open source
community. Red Hat for example, exemplifies this “reactive” strategy.31

In principle, a “reactive” commercial company may want to encourage
and subsidize the open source movement; for example, by allocating a few
programmers to the open source project.32 Red Hat will make more money
on support if Linux is successful. Similarly, if logic semiconductors and
operating systems for personal computers are complements, one can show
by a revealed preference argument that Intel’s profits will increase if Linux
(which, unlike Windows, is free) takes over the PC operating system
market. Sun may benefit if Microsofts’ position is weakened; Oracle might
wish to port its database products to a Linux environment in order to
lessen its dependence on Sun’s Solaris operating system, and so forth.
Because firms do not capture all the benefits of the investments, though,
the free-rider problem often discussed in the economics of innovation
should apply here as well. Subsidies by commercial companies for open
source projects should remain limited unless the potential beneficiaries
succeed in organizing a consortium (which will limit the free-riding
problem).

Code Release A second strategy is to take a more proactive role in the
development of open source software. Companies can release existing pro-
prietary code and create some governance structure for the resulting open

Economic Perspectives on Open Source 67

source process. For example, Hewlett-Packard recently released its Spec-
trum Object Model linker to the open source community in order to help
the Linux community port Linux to Hewlett-Packard’s RISC architecture.33

This is similar to the strategy of giving away the razor (the released code)
to sell more razor blades (the related consulting services that HP will
provide).

When can it be advantageous for a commercial company to release
proprietary code under an open source license? The first situation is, as we
have noted, when the company expects to thereby boost its profit on a
complementary segment. A second is when the increase in profit in the
proprietary complementary segment offsets any profit that would have
been made in the primary segment, had it not been converted to open
source. Thus, the temptation to go open source is particularly strong when
the company is too small to compete commercially in the primary segment
or when it is lagging behind the leader and about to become extinct in
that segment.34,35

Various efforts by corporations selling proprietary software products to
develop additional products through an open source approach have been
undertaken. One of the most visible of these efforts was Netscape’s 1998
decision to make Mozilla, a portion of its browser source code, freely avail-
able. This effort encountered severe difficulties in its first year, receiving
only approximately two dozen postings by outside developers. Much of
the problems appeared to stem from the insufficiently “modular” nature
of the software: as a reflection of its origins as a proprietary commercial
product, the different portions of the program were highly interdependent
and interwoven. Netscape eventually realized it needed to undertake a
major restructuring of the program, in order to enhance the ability of open
source programmers to contribute to individual sections. It is also likely
that Netscape raised some suspicions by not initially adopting the right
governance structure. Leadership by a commercial entity may not inter-
nalize enough of the objectives of the open source community. In partic-
ular, a corporation may not be able to credibly commit to keeping all
source code in the public domain and to adequately highlighting im-
portant contributions.36

For instance, in the Mozilla project, Netscape’s unwillingness to make
large amounts of browser code public was seen as an indication of its ques-
tionable commitment to the open source process. In addition, Netscape’s
initial insistence on the licensing terms that allowed the corporation to
relicense the software developed in the open source project on a propri-
etary basis was viewed as problematic (Hamerly, Paquin, and Walton 1999).

68 Josh Lerner and Jean Tirole

(The argument is here the mirror image of the standard argument in indus-
trial economics that a firm may want to license its technology to several
licensees in order to commit not to expropriate producers of complemen-
tary goods and services in the future: see Shepard (1987) and Farrell and
Gallini (1988).) Netscape initially proposed the “Netscape Public License,”
a cousin to the BSD license that allowed Netscape to take pieces of the
open source code and turn them back into a proprietary project again. The
licensing terms, though, may not have been the hindering factor, since the
terms of the final license are even stricter than those of the GPL. Under
this new license (the “Mozilla Public License”), Netscape cannot relicense
the modifications to the code.

Intermediaries Hewlett-Packard’s management of the open source process
seems consistent with Dessein (1999). Dessein shows that a principal with
formal control rights over an agent’s activity in general gains by delegat-
ing his control rights to an intermediary with preferences or incentives
that fall between or combine between his and the agent’s. The partial align-
ment of the intermediary’s preferences with the agent’s fosters trust and
boosts the agent’s initiative, ultimately offsetting the partial loss of control
for the principal. In the case of Collab.Net’s early activities, the con-
gruence with the open source developers was obtained through the em-
ployment of visible open source developers (for example, the president
and chief technical officer is Brian Behlendorf, one of the cofounders of
the Apache project) and the involvement of O’Reilly, a technical book
publisher with strong ties to the open source community.

Four Open Economic Questions about Open Source

There are many other issues posed by open source development that
require further thought. This section highlights a number of these as
suggestions for future work.

Which Technological Characteristics Are Conducive to a Smooth Open
Source Development?
This chapter has identified a number of attributes that make a project a
good or poor candidate for open source development. But it has stopped
short of providing a comprehensive picture of determinants of a smooth
open source development. Let us mention a few topics that are worth
further investigation:

Economic Perspectives on Open Source 69

� Role of applications and related programs. Open source projects differ in the
functionalities they offer and in the number of add-ons that are required
to make them attractive. As the open source movement comes to matu-
rity, it will confront some of the same problems as commercial software
does; namely, the synchronization of upgrades and the efficient level of
backward compatibility. A user who upgrades a program (which is very
cheap in the open source model) will want either the new program to be
backward compatible or applications to have themselves been upgraded to
the new version.37 We know from commercial software that both
approaches to compatibility are costly; for example, Windows program-
mers devote a lot of time to backward compatibility issues, and encourag-
ing application development requires fixing applications programming
interfaces about three years before the commercial release of the operating
system. A reasonable conjecture could be that open source programming
would be appropriate when there are fewer applications or when IT
professionals can easily adjust the code so as to ensure compatibility
themselves.
� Influence of competitive environment. Based on very casual observation, it
seems that open source projects sometimes gain momentum when facing
a battle against a dominant firm, although our examples show open source
projects can do well even in the absence of competition.38 To understand
why this might be the case (assuming this is an empirical fact, which
remains to be established!), it would be useful to go back to the econom-
ics of cooperative joint ventures. These projects are known to work better
when the members have similar objectives.39 The existence of a dominant
competitor in this respect tends to align the goals of the members, and the
best way to fight an uphill battle against the dominant player is to remain
united. To be certain, open source software development works differently
from joint venture production, but it also relies on cooperation within a
heterogeneous group; the analogy is well worth pursuing.
� Project lifespan. One of the arguments offered by open source advocates
is that because their source code is publicly available, and at least some
contributions will continue to be made, its software will have a longer
duration. (Many software products by commercial vendors are abandoned
or no longer upgraded after the developer is acquired or liquidated, or even
when the company develops a new product to replace the old program.)
But another argument is that the nature of incentives being offered open
source developers—which, as discussed earlier, lead them to work on
highly visible projects—might bring about a “too early” abandonment of
projects that experience a relative loss in popularity. An example is the

70 Josh Lerner and Jean Tirole

XEmacs project, an open source project to create a graphical environment
with multiple “windows” that originated at Stanford. Once this develop-
ment effort encountered an initial decline in popularity, many of the open
source developers appeared to move onto alternative projects.

Optimal Licensing
Our discussion of open source licensing has been unsatisfactory. Some
licenses (e.g., BSD and its close cousin the Apache license) are relatively
permissive, while others (e.g., GPL) force the user to distribute any changes
or improvements (share them) if they distribute the software at all.

Little is known about the trade-off between encouraging add-ons that
would not be properly supplied by the open source movement and pre-
venting commercial vendors (including open source participants) from free
riding on the movement or even “hijacking” it. An open source project
may be hijacked by a participant who builds a valuable module and then
offers proprietary APIs to which application developers start writing. The
innovator has then built a platform that appropriates some of the benefits
of the project. To be certain, open source participants might then be
outraged, but it is unclear whether this would suffice to prevent the
hijacking. The open source community would then be as powerless as
the commercial owner of a platform upon which a “middleware” pro-
ducer superimposes a new platform.40

The exact meaning of the “viral” provisions in the GPL license, say, or
more generally the implications of open source licenses, have not yet been
tested in court. Several issues may arise in such litigation: for instance,
determining who has standing for representing the project if the com-
munity is fragmented, and how a remedy would be implemented (for
example, the awarding of damages for breach of copyright agreement
might require incorporating the beneficiaries).

Coexistence of Commercial and Open Source Software
On a related note, the existence of commercial entities living symbiotically
off the efforts of open source programmers as well as participating in open
source projects raises new questions.

The flexible open source licenses allow for the coexistence of open and
closed source code. While it represents in our view (and in that of many
open source participants) a reasonable compromise, it is not without
hazards.

The coexistence of commercial activities may alter the programmers’
incentives. Programmers working on an open source project might be

Economic Perspectives on Open Source 71

tempted to stop interacting and contributing freely if they think they have
an idea for a module that might yield a huge commercial payoff. Too many
programmers might start focusing on the commercial side, making the
open source process less exciting. Although they refer to a different envi-
ronment, the concerns that arise about academics’ involvement in start-
up firms, consulting projects, and patenting could be relevant here as well.
While it is too early to tell, some of these same issues may appear in the
open source world.41

Can the Open Source Process Be Transposed to Other Industries?
An interesting final question is whether the open source model can be
transposed to other industries. Could automobile components be devel-
oped in an open source mode, with GM and Toyota performing an assem-
bler function similar to that of Red Hat for Linux? Many industries involve
forms of cooperation between commercial entities in the form of for-profit
or not-for-profit joint ventures. Others exhibit user-driven innovation or
open science cultures. Thus a number of ingredients of open source soft-
ware are not specific to the software industry. Yet no other industry has
yet produced anything quite like open source development. An important
research question is whether other industries ever will.

Although some aspects of open source software collaboration (such as
electronic information exchange across the world) could easily be dupli-
cated, other aspects would be harder to emulate. Consider, for example,
the case of biotechnology. It might be impossible to break up large pro-
jects into small manageable and independent modules and there might
not be sufficient sophisticated users who can customize the molecules to
their own needs. The tasks that are involved in making the product avail-
able to the end user involve much more than consumer support and even
friendlier user interfaces. Finally, the costs of designing, testing, and
seeking regulatory approval for a new drug are enormous.

More generally, in many industries the development of individual com-
ponents require large-team work and substantial capital costs, as opposed
to (for some software programs) individual contributions and no capital
investment (besides the computer the programmer already has). Another
obstacle is that in mass-market industries, users are numerous and rather
unsophisticated, and so deliver few services of peer recognition and ego
gratification. This suggests that the open source model may not easily be
transposed to other industries, but further investigation is warranted.

Our ability to answer confidently these and related questions is likely to
increase as the open source movement itself grows and evolves. At the same

72 Josh Lerner and Jean Tirole

time, it is heartening to us how much of open source activities can be
understood within existing economic frameworks, despite the presence of
claims to the contrary. The literatures on “career concerns” and on com-
petitive strategies provide lenses through which the structure of open
source projects, the role of contributors, and the movement’s ongoing
evolution can be viewed.

Notes

The assistance of the Harvard Business School’s California Research Center, and

Chris Darwall in particular, is gratefully acknowledged. We also thank a number of

practitioners—especially Eric Allman, Mike Balma, Brian Behlendorf, Keith Bostic,

Tim O’Reilly, and Ben Passarelli—for their willingness to generously spend time dis-

cussing the open source movement. George Baker, Jacques Crémer, Rob Merges,

Bernie Reddy, Pierre Régibeau, Bernard Salanié, many open source participants,

seminar participants at the American Economics Association annual meetings, Euro-

pean Economic Association Bolzano meetings, Harvard, and three anonymous ref-

erees provided helpful comments. Harvard Business School’s Division of Research

provided financial support. The Institut D’Economie Industrielle receives research

grants from a number of corporate sponsors, including French Telecom and the

Microsoft Corporation. This chapter is a modified version of Lerner and Tirole 2002,

for which Blackwell Publishing holds the copyright and has granted permission for

this use. All opinions and errors remain our own.

1. The media like to portray the open source community as wanting to help

mankind, as it makes a good story. Many open source advocates put limited em-

phasis on this explanation.

2. It should be noted that these changes are far from universal. In particular, many

information technology and manufacturing firms appear to be moving to less of

an emphasis on basic science in their research facilities (for a discussion, see

Rosenbloom and Spencer 1996).

3. This history is of necessity highly abbreviated and we do not offer a complete

explanation of the origins of open source software. For more detailed treatments,

see Browne 1999; DiBona, Ockman, and Stone 1999; Gomulkiewicz 1999; Levy

1994; Raymond 2001; and Wayner 2000.

4. Programmers write source code using languages such as Basic, C, and Java. By

way of contrast, most commercial software vendors provide users with only object,

or binary, code. This is the sequence of 0s and 1s that directly communicates with

the computer, but which is difficult for programmers to interpret or modify. When

the source code is made available to other firms by commercial developers, it is

typically licensed under very restrictive conditions.

Economic Perspectives on Open Source 73

5. It should be noted, however, that some projects, such as the Berkeley Software

Distribution (BSD) effort, did take alternative approaches during the 1980s. The BSD

license also allows anyone to freely copy and modify the source code (as long as

credit was given to the University of California at Berkeley for the software devel-

oped there, a requirement no longer in place). It is much less constraining than the

GPL: anyone can modify the program and redistribute it for a fee without making

the source code freely available. In this way, it is a continuation of the university-

based tradition of the 1960s and 1970s.

6. Two main open source projects (GNOME and KDE) are meant to remedy Linux’s

limitations on desktop computers (by developing mouse and windows interfaces).

7. For example, Torvalds (interview by Ghosh 1998b) argues that the Linux model

works best with developer-type software. Ghosh (1998) views the open source

process as a large repeated game process of give-and-take among developer-users (the

“cooking pot” model).

8. To be certain, backward compatibility efforts can sometimes be exerted by status-

seeking open source programmers. For example, Linux has been made to run on

Atari machines—a pure bravado effort, since no one uses Ataris anymore.

9. We focus primarily on programmers’ contributions to code. A related field of

study concerns field support, which is usually also provided free of charge in the

open source community. Lakhani and von Hippel 2003 provide empirical evidence

for field support in the Apache project. They show that providers of help often gain

learning for themselves, and that the cost of delivering help is therefore usually low.

10. Linus Torvalds and others have been awarded shares in Linux-based companies

that went public. Most certainly, these rewards were unexpected and did not affect

the motivation of open source programmers. If this practice becomes “institution-

alized,” such rewards will in the future be expected and therefore impact the moti-

vation of open source leaders. More generally, leaders of open source movements

may initially not have been motivated by ego gratification and career concerns. Like

Behlendorf, Wall, and Allman, the “bug fixing” motivation may have originally been

paramount. The private benefits of leadership may have grown in importance as the

sector matured.

11. Success at a commercial software firm is likely to be a function of many attrib-

utes. Some of these (for example, programming talent) can be signaled through

participation in open source projects. Other important attributes, however, are not

readily signaled through these projects. For instance, commercial projects employ-

ing a top-down architecture require that programmers work effectively in teams,

while many open source projects are initiated by relatively modest pieces of code,

small enough to be written by a single individual.

12. Dasgupta and David (1994) suggest an alternative explanation for these pat-

terns: the need to impress less-informed patrons who are likely to be impressed by

74 Josh Lerner and Jean Tirole

the academic’s undertaking research in a “hot” area. These patterns probably are

driven by academic career concerns. New fields tend to be relatively more attractive

to younger researchers, since older researchers have already invested in established

fields and therefore have lower marginal costs of continuing in these fields. At the

same time, younger researchers need to impress senior colleagues who will evaluate

them for promotion. Thus, they need the presence of some of their seniors in the

new fields.

13. Later in this chapter we will discuss companies’ incentives to release code.

14. Open source projects might be seen as imposing less of a competitive threat to

the firm. As a result, the firm could be less inclined to enforce its property rights on

innovations turned open source. Alternatively, the firm may be unaware that the

open source project is progressing.

15. To be certain, commercial firms (e.g., Netscape, Sun, O’Reilly, Transmeta) sup-

porting open source projects are also able to compensate programmers, because they

indirectly benefit financially from these projects. Similarly, the government and

non-profit corporations have done some subsidizing of open source projects. Still,

there should be an edge for commercial companies.

16. While we are here interested in private incentives to participate, note that this

complementarity between apprenticeship and projects is socially beneficial. The

social benefits might not increase linearly with open source market share, though,

since the competing open source projects could end up competing for attention in

the same common pool of students.

17. To be certain, commercial companies leave APIs (application programming

interfaces) for other people to provide add-ons, but this is still quite different from

opening the source code.

18. On the relationship between empowerment and career concerns, see Ortega

2000. In Cassiman’s (1998) analysis of research corporations (for-profit centers

bringing together firms with similar research goals), free riding by parent com-

panies boosts the researchers’ autonomy and helps attract better talents. Cassiman

argues that it is difficult to sustain a reputation for respecting the autonomy of

researchers within firms. Cassiman’s analysis looks at real control, while our argu-

ment here results from the absence of formal control over the OS programmer’s

activity.

19. A standard argument in favor of open source processes is their massive parallel

debugging. Typically, commercial software firms can ask users only to point at prob-

lems: beta testers do not fix the bugs, they just report them. It is also interesting to

note that many commercial companies do not discourage their employees from

working on open source projects. In many cases where companies encourage such

involvement, programmers use open source tools to fix problems. Johnson (1999)

builds a model of open source production by a community of user-developers. There

Economic Perspectives on Open Source 75

is one software program or module to be developed, which is a public good for the

potential developers. Each of the potential developers has a private cost of working

on the project and a private value of using it; both of which are private informa-

tion. Johnson shows that the probability that the innovation is made need not

increase with the number of developers, as free-riding is stronger when the number

of potential developers increases.

20. An argument often heard in the open source community is that people partic-

ipate in open source projects because programming is fun and because they want

to be “part of a team.” While this argument may contain a grain of truth, it is some-

what puzzling as it stands, for it is not clear why programmers who are part of a

commercial team could not enjoy the same intellectual challenges and the same

team interaction as those engaged in open source development. (To be sure, it may

be challenging for programmers to readily switch employers if their peers in the

commercial entity are not congenial.) The argument may reflect the ability of pro-

grammers to use participation in open source projects to overcome the barriers that

make signaling in other ways problematic.

21. Valloppillil (1998) further argues that reaching commercial grade quality often

involves unglamorous work on power management, management infrastructure,

wizards, and so forth, that makes it unlikely to attract open source developers.

Valloppillil’s argument seems a fair description of past developments in open source

software. Some open source proponents do not confer much predictive power on

his argument, though; they predict, for example, that open source user interfaces

such as GNOME and KDE will achieve commercial grade quality.

22. Open source projects have trouble attracting people initially unless they leave

fun challenges “up for grabs.” On the other hand, the more programmers an open

source project attracts, the more quickly the fun activities are completed. The reason

why the projects need not burn out once they grow in ranks is that the “fixed cost”

that individual programmers incur when they first contribute to the project is sunk,

and so the marginal cost of continuing to contribute is smaller than the initial cost

of contributing.

23. E.g., Valloppillil’s (1998) discussion of the Mozilla release.

24. It should be cautioned that these observations are based on a small sample

of successful projects. Observing which projects succeed or fail and the reasons

for these divergent outcomes in an informal setting such as this one is quite

challenging.

25. The terminology and the conceptual framework are here borrowed from

Aghion-Tirole 1997.

26. For instance, concerns about the “poaching” of key employees was one of the

reasons cited for Steve Jobs’s recent decision to cease giving credit to key program-

mers in Apple products (Claymon 1999).

76 Josh Lerner and Jean Tirole

27. For the economic analysis of employee visibility, see Gibbons 1997 and Gibbons

and Waldman’s (1999) review essays. Ronde 1999 models the firms’ incentives

to “hide” their workers from the competition in order to preserve their trade

secrets.

28. Commercial vendors try to address this problem in various ways. For example,

Microsoft developers now have the right to present their work to their users. Pro-

motions to “distinguished engineer” or to a higher rank more generally, as well as

the granting of stock options as a recognition of contributions, also make the

individual performance more visible to the outside world.

29. Cusamano and Selby (1995), though, document a number of management

institutions at Microsoft that attempt to limit these pressures.

30. Another motivation for commercial companies to interface with the open

source world might be public relations. Furthermore, firms may temporarily encour-

age programmers to participate in open source projects to learn about the strengths

and weaknesses of this development approach.

31. Red Hat provides support for Linux-based products, while VA Linux provided

hardware products optimized for the Linux environment. In December 1999, their

market capitalizations were $17 and $10 billion respectively, though they have

subsequently declined significantly.

32. Of course, these programmers also increase the company’s ability to learn from

scientific and technical discoveries elsewhere and help the company with the devel-

opment of the proprietary segment.

33. Companies could even (though probably less likely) encourage ex nihilo devel-

opment of new pieces of open source software.

34. See, for example, the discussion of SGI’s open source strategy in Taschek (1999).

35. It should also be noted that many small developers are uncomfortable doing

business with leading software firms, feeling them to be exploitative, and that these

barriers may be overcome by the adoption of open source practices by the large

firms. A rationalization of this story is that, along the lines of Farrell and Katz (2000),

the commercial platform owner has an incentive to introduce substitutes in a com-

plementary segment, in order to force prices down in that segment and to raise the

demand for licenses to the software platform. When, however, the platform is avail-

able through, for instance, a BSD-style license, the platform owner has no such

incentives, as he or she cannot raise the platform’s price. Vertical relationships

between small and large firms in the software industry are not fully understood, and

would reward further study.

36. An interesting question is why corporations do not replicate the modular struc-

ture of open source software in commercial products more generally. One possibil-

ity may be that modular code, whatever its virtues for a team of programmers

Economic Perspectives on Open Source 77

working independently, is not necessarily better for a team of programmers and

managers working together.

37. The former solution may be particularly desirable if the user has customized last

generation’s applications.

38. Wayner (2000) argues that the open source movement is not about battling

Microsoft or other leviathans and notes that in the early days of computing (say,

until the late seventies) code sharing was the only way to go as “the computers were

new, complicated, and temperamental. Cooperation was the only way that anyone

could accomplish anything.” This argument is consistent with the hypothesis stated

later, according to which the key factor behind cooperation is the alignment of

objectives, and this alignment may come from the need to get a new technology

off the ground, from the presence of a dominant firm, or from other causes.

39. See, for example, Hansmann 1996.

40. The increasing number of software patents being granted by the U.S. Patent and

Trademark Office provide another avenue through which such a hijacking might

occur. In a number of cases, industry observers have alleged that patent examin-

ers—not being very familiar with the unpatented “prior art” of earlier software

code—have granted unreasonably broad patents, in some cases giving the applicant

rights to software that was originally developed through open source processes.

41. A related phenomenon that would reward academic scrutiny is “shareware.”

Many of packages employed by researchers (including several used by economists,

such as MATLAB, SAS, and SPSS) have grown by accepting modules contributed

by users. The commercial vendors coexist with the academic user community in a

positive symbiotic relationship. These patterns provide a useful parallel to open

source.

78 Josh Lerner and Jean Tirole

II The Evaluation of Free/Open Source Software

Development

4 Standing in Front of the Open Source Steamroller

Robert L. Glass

I am a contrarian by nature. I have a certificate pronouncing me the
“premier curmudgeon of software practice.” I am the author of a regular
column in IEEE Software magazine called “The Loyal Opposition.” I have
been standing up in front of advancing software steamrollers throughout
my career:

� Attempting to diminish the communication chasm between academe in
industry, beginning as far back as the early 1960s (and, I would add, con-
tinuing to this day)
� Opposing the apparent inevitability of IBM hardware and software in the
1960s (I participated on a team that put a complete homegrown software
system—including, for example, a homegrown operating system—on its
IBM hardware in order to allow us to more easily transition to other
vendors later on)
� Questioning the insistent academic push for formal methods in software,
beginning in the 1970s (I questioned them then, and I fault the academic
community for advocating without evaluating them now)
� Looking objectively at each new software fad and fancy, from the struc-
tured approaches to object orientation to the agile methods, to find out
whether there is any research support for the hyped claims of conceptual
zealots (there almost never is)

All of that marks me, of course, as someone you might want to listen to,
but not necessarily believe in!

Here in this book on open source and free software, I want to take that
same contrarian position. To date, much of the writing on open source
software has been overwhelmingly supportive of the idea. That over-
whelming support is the steamroller that I intend to stand up in front of
here.

Before I get to the primary content of this chapter, disaggregating and
questioning the primary tenets of open source, let me present to you here
some of the qualifications that have resulted in my feeling confident
enough to take such an outrageous position:

� I am a 45+-year veteran of the software profession.
� I have deliberately remained a software technologist throughout my
career, carefully avoiding any management responsibilities.
� As a technologist, I have made the most of what I call the “Power of
Peonage”—the notion that a skilled and successful technologist has
political powers that no one further up the management hierarchy has,
because they are not vulnerable to loss of position if someone chooses
to punish them for their actions; one of my favorite sayings is “you can’t
fall off the floor” (I once wrote a book of anecdotes, now out of print,
about that “Power of Peonage”)
� Two of my proudest moments in the software field involved building
software products for which I received no compensation by my employer:
. A Fortran-to-Neliac programming language translator, back in those anti-
IBM days I mentioned previously, which I built in my spare time at home
just to see if I could do it (I called my translator “Jolly Roger,” because its
goal was to make it possible to transition IBM-dependent Fortran programs
to the vendor-independent Neliac language my team had chosen to
support).
. A generalization of a chemical composition scientific program whose
goal was to calculate/simulate the thrust that mixing/igniting certain
chemicals in a rocket engine would produce. When I began my Thanks-
giving Day work at home, the product would handle only combinations
of five chemical elements. When I finished, the program could handle any
additional sixth element for which the users could supply the needed data.
(This addition allowed my users to determine that boron, being touted in
the newsmagazines of that time as the chemical element of rocketry’s
future, was worthless as an additive.)

So, am I in favor of programmers doing their own programming thing on
their own time? Of course. It is the claims and political activities that go
along with all of that that form the steamroller I want to stand in front of.
Let me tell you some of what I dislike about the open source movement.

Hype

Hype is not unknown in the software field in general. The advocates of
every new software idea exaggerate the benefits of using that idea. Those

82 Robert L. Glass

exaggerated claims generally have no basis in reality (see, for example, Glass
1999). Unfortunately, and perhaps surprisingly, the advocates of open
source are no better in this regard than their callous proprietary colleagues.
Claims are made for the use and future of open source software that simply
boggle the rational mind, as described in the following sections.

Best People
The claim is frequently made that open source programmers are the best
programmers around. One author, apparently acting on input from open
source zealots, said things like “Linux is the darling of talented program-
mers,” and opined that the open source movement was “a fast-forward
environment in which programming’s best and brightest . . . contribute the
most innovative solutions” (Sanders 1998).

Is there any evidence to support these claims? My answer is “No,” for
several reasons:

� There is little data on who the best programmers are. Attempts to define
Programmer Aptitude Tests, for example, which evaluate the capabilities
of subjects to become good programmers, have historically been largely
failures. In an early study, the correlation between computer science grades
and practitioner achievement was found to be negative. Although some
programmers are hugely better than others—factors up to 30 :1 have been
cited—nothing in the field’s research suggests that we have found an objec-
tive way of determining who those best people are.
� Since we can’t identify who the best people are, there is no way to study
the likelihood of their being open source programmers. Thus those who
claim that open source people are software’s “best and brightest” cannot
possibly back up those claims with any factual evidence.
� It is an interesting characteristic of programmers that most of them tend
to believe that they are the best in the field. Certainly, I know that few
programmers are better than I am! It used to be a standard joke in the soft-
ware field that, if a roomful of programmers were asked to rate themselves,
none of them would end up in the second tier. Therefore, I suspect that if
you took any group of programmers—including open source program-
mers—and asked them if they were the field’s best and brightest, they
would answer in the affirmative. That, of course, does not make it so.

Most Reliable
The claim is also frequently made that open source software is the most
reliable software available. In this case, there are some studies—and some
interesting data—to shed light on this claim.

Standing in Front of the Open Source Steamroller 83

The first thing that should be said about open source reliability is that
its advocates claim that a study identified as the “Fuzz Papers” (Miller,
Fredriksen, and So 1990; Miller et al. 1995; Forrester and Miller 2000)
produced results that showed that their software was, indeed, more
reliable than its proprietary alternatives.

As a student of software claims, I have followed up on the Fuzz Papers.
I obtained the papers, read and analyzed them, and contacted their
primary author to investigate the matter even further. The bottom line of
all that effort is that the Fuzz Papers have virtually nothing to say about
open source software, one way or the other, and their author agrees with
that assessment (he does say, though, that he personally believes that open
source may well be more reliable). Thus it is truly bizarre that anyone
would claim that these studies (they are peculiar studies of software
reliability, and to understand why I say “peculiar,” you should read them
yourself!) support the notion that open source code is more reliable.

Since then at least one academic researcher has done further, real studies
of open source code reliability. In that work, we find that open source
programmers do not tend to use any special reliability techniques—for
example, fully 80% of them do not produce any test plans, and only 40% use
any test tools. The author surmises that “open source people tend to rely on
other people to look for defects in their products” (Zhao and Elbaum 2000).

That latter point deserves more discussion. One popular saying in the
open source world is “Given enough eyeballs, all bugs are shallow”
(Raymond 2001, 41). What this means is that the open source culture,
which involves people reading and critiquing the code of others, will tend
to find and eventually eliminate all software bugs. But there is a problem
with this belief. It is based on the assumption that all open source code
will be thoroughly reviewed by its readers. However, the review of open
source code is likely to be very spotty. We will see later in this chapter that
open source people tend to review heavily code that particularly interests
them, and spend little or no time on code that does not. Therefore, there
is no guarantee that any piece of open source code will be thoroughly
reviewed by members of the community. To make matters worse, there is
no data regarding how much of any open source code is in fact reviewed.
As a result, the belief that all open source code will be subjected to “many
eyeballs” is naive and, in the end, unprovable.

Most Secure
Just as the claims are rampant that open source software is more reliable
than its proprietary alternatives, there are analogous claims that it is more

84 Robert L. Glass

secure. The more the drumbeat of concern for secure software accelerates,
the louder those claims become.

Unlike the software reliability issue, there is very little evidence on either
side of the ledger regarding software security. Certainly security holes have
been found in proprietary software. Certainly also, holes have been found
in open source code (see, for example, Glass 2002a). And both sides have
made strong claims that their software is either secure, or that they are
making it so.

Probably the most accurate thing anyone can say about software
security is that (a) it is all too easy for programmers to leave holes, inde-
pendent of how the code is being written (for a list of the top five
security-related software defects, see Glass 2003a); (b) the perversity of
“crackers” tends to mean that wherever they seek security holes, they are
likely to find them, and they tend to seek wherever the loudest claims are
that the software is secure! (For example, in the book Know Your Enemy
(Honeypot Project 2002), a study of cracker techniques by using “honey-
pot” systems to trap them, one “black hat” was specifically going after
Linux-based .edu systems because of their claims of invulnerability, a chill-
ing thought for both open source advocates and academics who use their
wares).

And with respect to the open source claims, there is plenty of anecdotal
evidence (e.g., Glass 2003b) to back both the security claims of the open
source advocates and their proprietary counterparts, but there is really no
definitive evidence to cause either side to be seen as victorious.

Economic Model

Probably the most fascinating thing about the open source movement is
its economic model. Here are people often willing to work for no recom-
pense whatsoever, except the joy of a job well done and the accolades of
their peers! It all seems terribly noble, and in fact that nobility is undoubt-
edly part of the appeal of the open source movement.

It also seems faintly Utopian. There have been lots of Utopian move-
ments in the past, where workers banded together to work for that joy of
a job well done and for the common good (and, once again, for the
accolades of their peers). There are two interesting things about Utopian
movements. They begin in enormous enthusiasm. And they end, usually
a few decades later, in failure. What are the most common causes of
Utopian failure?

Standing in Front of the Open Source Steamroller 85

� The impractical nature of the economic model (I will discuss that in
following sections).
� Political splintering, as discussed in a following section (note that some
Utopian religious societies, such as the Harmonists, also failed because they
decided to practice celibacy, but that fact seems totally unrelated to the
open source movement!).

So, regarding that practicality issue, just how impractical is the open
source movement? To date, the answer would appear to be that there is no
sign of the movement’s collapse because it is impractical.

There is little evidence one way or the other as to the size of the move-
ment, but the frequency of its mention in the computing popular press
would tend to suggest that it is growing. Its advocates are also increasingly
outspoken. And companies have sprung up that, while not making money
on open source products, are making money on servicing those products
(e.g., Red Hat).

Then there is the issue of Communism, an issue that is usually present
in discussions about the problems of open source, although it has rarely
surfaced. There is a faint whiff of Communism about the concept of
working for no financial gain. Open source is certainly not about “from
each according to his ability, to each according to his need,” so that whiff
is indeed faint. But the sense of nobility that open source proponents feel,
in working for no financial gain, resonates with some of the other basic
Communist philosophies. And the open source proponents themselves can
sometimes sound just like Communists. One columnist (Taschek 2002)
recently spoke of anti-Linux forces as “capitalist interests,” and later on as
“capitalist forces.” He also claimed that some anti-Linux people are behav-
ing as “Microsoft lackeys.” While opposing capitalism and using the word
“lackeys” is not proof that the author of that column is Communist, the
rhetoric he chose to use certainly reminds one of Communist rhetoric.
Whether Communism is a good thing or not is, of course, up to the reader.
But in this discussion of the practicality of the open source economic
model, it is worth noting that the Communist system is in considerable
decline and disfavor in today’s world.

It is particularly interesting that advocates of open source refer to “the
cathedral and the bazaar” in their discussions of the movement and its
alternatives (Raymond 2001). In that view, open source represents the
bazaar, a place where people freely trade their wares and skills, and the
proprietary movement is represented by the cathedral, a bricks-and-mortar
institution with little flexibility for change. I find that particularly inter-

86 Robert L. Glass

esting, because, when I first saw this particular analogy, I assumed that
open source would be the cathedral, a pristine and worshipful place, and
proprietary software would be the bazaar, where products and money
change hands, and there is a strong tendency toward working for profit! I
suppose that those who invent analogies are entitled to make them work
in any way they wish. But my own thinking about this pair of analogies
is that the open source way of viewing it is fairly bizarre!

Does the open source economic model show promise of working in the
long term? There is no evidence at present that it will not, but on the other
hand it is worth noting that the analogies we can draw between it and
other relevant economic models is primarily about models that eventually
failed.

Political/Sociological Model

It is common in open source circles to see the participants in the open
source movement as willing, independent enthusiasts. But, on deeper
analysis, it is evident that there is a strange kind of hierarchy in the
movement.

First of all, there are the methodology gurus. A very few outspoken
participants articulate the movement and its advantages, through their
writings and speakings, spreading the gospel of open source.

More significantly, there are also product gurus. Because of the large
number of people reading, critiquing, and offering changes to open source
products, there is a need for someone to adjudicate among those proposed
changes and configure the final agreed-upon version of the product. Linux,
for example, has its Linus Torvalds, and it would be difficult to imagine
the success of the Linux operating system without Linus. I will discuss a
bit later why a product guru is needed.

Then there are the contributors of open source products. These are the
programmers who develop products and release them into the open source
product inventory. Some of these contributors, if their product is especially
successful, may become product gurus.

And finally, there is that great mass of open source code readers. Readers
analyze and critique code, find its faults, and propose changes and
enhancements. As in many hierarchies, the success of the open source
movement is really dependent on these readers at the bottom of the
hierarchy. Its claims of reliability and security, for example, are in the
end entirely dependent on the rigor and energy and skill which
the readers place in their work.

Standing in Front of the Open Source Steamroller 87

To understand this hierarchy better, it is necessary to contemplate how
it functions when a change or an error fix for a product is proposed. The
change moves up the hierarchy to the product guru, who then makes a
decision as to whether the change is worthy of inclusion in the product.
If it is, the change is made and becomes a permanent part of the product.

It is when the change is rejected for inclusion that things can get inter-
esting. Now the reader who identified the change has a dilemma to deal
with. Either he/she must forget about the change, or make that change in
a special and different version of the product. This latter is actually con-
sidered an option in the open source movement, and there is a verb—
forking—that covers this possibility. The reader who wants his change made
in a special version is said to have forked the product, and the further
development of the product may take place on both of these forks.

But forking is an extremely uncommon thing to do in the open source
movement, with good reason. First of all, there is the possibility of loss of
commonality. The Unix operating system, for example, is roundly criti-
cized because there are multiple versions of that product, each with its
own advocate (often a vendor), and as a result there is really no such thing
as the Unix system any more. That is a serious enough problem that it
warrants strict attention to whether forking a product is really a good
thing.

There is an even stronger reason, though, why forking is uncommon. It
has been well known in the software field for more than 30 years that
making modifications to a standard product is a bad idea. It is a bad
idea because, as the product inevitably progresses through many versions—
each of which usually includes desirable changes and modifications—the
forked version(s) are left out of that progress. Or, worse yet, the new
changes are constantly being added to the forked version (or the forking
changes are being added to the new standard version) by the person who
created the fork, both of which are terribly labor-intensive and error-prone
activities.

Now, let’s step back and look at the impact of this forking problem on
the field of open source. The claim is frequently made by open source
advocates that programmers who find fault with a product are free to make
their own fixes to it, and are capable of doing so because they have access
to the product’s source code. That’s all well and good if those changes are
eventually accepted into the product, but if they are not, then the very
serious problem of forking arises. Thus the notion of the average user
feeling free to change the open source product is a highly mixed blessing,
and one unlikely to be frequently exercised.

88 Robert L. Glass

There is another interesting sociological problem with open source.
Again, the claim is frequently made that users can read their code and find
and fix its problems. This is all well and good if the users are programmers,
but if they are not this is simply a technical impossibility. Code reading is
a difficult exercise even for the trained programmer, and it is simply not
possible, to any meaningful degree, for the non-programmer user. What
this means is that only code where programmers are the users is likely to
receive the benefits of open source code reading, such as the “many eye-
balls” reliability advantages mentioned previously. And how much code
is used by programmers? This is an important question, one for which
fortunately there are answers. The largest category of code, according to
numerous censuses of programs, is for business applications—payroll,
general ledger, and so on. The next largest category is for scientific/engi-
neering applications. In neither of these cases are the users, in general, pro-
grammers. It is only for the category “systems programs” (e.g., operating
systems, compilers, programmer support tools) where, commonly, the
users are in fact programmers. Thus the percentage of software that is likely
to be subject to open source reading is at best pretty minuscule.

All of these open source hierarchic sociological conditions are a bit
ironic, in the context of some of the claims made for open source. For
example, one zealot, in the midst of reciting the benefits of open source
and urging people to switch to its use, said “Abandon your corporate
hierarchies,” implying that hierarchies didn’t exist in the open source
movement. As we have seen, that claim is extremely specious.

Remember that we spoke earlier about Utopian societies eventually
dying because of political splintering? So far, the open source movement
has nicely avoided many of those kinds of hazards, especially since forking
(which might be the source of such splintering) turns out to be such a bad
idea (for nonpolitical reasons). There is one serious fracture in the open
source movement, between those who believe in “free” software and those
who believe in “open source” software (an explanation of the differences
is vitally important to those on both sides of the fracture, but of little
importance to anyone else studying the movement from a software engi-
neering perspective), but so far, except for public spats in the literature,
these differences seem to have had little effect on the field.

However, there are some interesting political considerations afoot here.
Both the open source and proprietary supporters have begun trying to
enlist political support to ensure and enhance the future of their
approaches (Glass 2002b). For example, one South American country
(Peru) is considering a law that would require “free software in public

Standing in Front of the Open Source Steamroller 89

administration,” on the grounds that free software is the only way to guar-
antee local control of the software product (as we have seen earlier, that is
a dangerously naive argument). And the U.S. Department of Defense is said
to have been inundated by requests from proprietary companies like
Microsoft to oppose the use of open source code in DoD systems. This kind
of thing, ugly at best, may well get uglier as time goes on.

All of that brings us to another fascinating question. What is the future
of open source . . . and how is it related to the past of the software field?

The Future . . . and the Past

First, let’s look back at the past of open source software. Raymond
(2001) dates open source back to “the beginnings of the Internet, 30 years
ago.”

That doesn’t begin to cover open source’s beginnings. It is important
to realize that free and open software dates back to the origins of the
computing field, as far back as the 1950s, fifty-odd years ago. Back then,
all software was available for free, and most of it was open.

Software was available for free because it hadn’t really occurred to
anyone that it had value. The feeling back then was that computer hard-
ware and software were inextricably intertwined, and so you bought the
hardware and got the software thrown in for free. And software was open
because there was little reason for closing it—since it had no value in the
marketplace, it didn’t occur to most people in the field that viewing source
code should be restricted. There were, in fact, thriving software bazaars,
where software was available for the taking from user organizations like
SHARE, and the highest accolade any programmer could receive was to
have his or her software accepted for distribution in the SHARE library,
from which it was available to anyone in the field.

Freely available, open software remained the rule into the mid-1960s,
when antitrust action against IBM by the U.S. Department of Justice first
raised the issue of whether the so-called “bundling” of software with hard-
ware constituted a restriction of trade. Eventually, IBM “unbundled” hard-
ware and software, and—for the first time—it was possible to sell software
in the open marketplace. However, IBM (it was widely believed at the time)
deliberately underpriced its software to inhibit a marketplace for software,
which might enable computer users to move beyond IBM products into
those of other hardware vendors (who had historically not offered as much
bundled software as IBM). Thus, even when software was no longer free
and open, there was still not much of a marketplace for it.

90 Robert L. Glass

It was a matter of another decade or so before the marketplace for soft-
ware became significant. Until that happened, there was a plethora of small
software companies not making much money, and nothing like today’s
Microsoft and Computer Associates.

Whether all of that was a good thing or a bad thing can, of course, be
considered an open question. But for those of us who lived through the
era of software that was free and open because there were no alternatives,
a return to the notion of free and open software (and the loss of the
capability to profit from products in which we feel pride) feels like a huge
regressive step. However, there aren’t many of us old-timers around
anymore, so I suppose this argument is of little interest to the issue of the
future of open source as seen from the twenty-first century.

Because of all of that, let’s return to a discussion of the future of open
source. Advocates tend to make it sound like open source is without ques-
tion the future of the software field, saying things like “the open-source
age is inevitable,” while chiding Microsoft (the primary putative enemy of
open source, as we have already seen above) for sticking to the “buggy
whip” proprietary approach (Pavlicek 2002).

Raymond (2001) goes even further. He says things like “Windows 2000
will be either canceled or dead on arrival,” “the proprietary Unix sector
will almost completely collapse,” “Linux will be in effective control of
servers, data centers, ISPs, and the Internet,” and ultimately, “I expect the
open source movement to have essentially won its point about software
within the next three to five years.” And then he proposes a blueprint
for fighting the war that he sees necessary to make it so, with things like
“co-opting the prestige media that serves the Fortune 500” (he names,
for example, the New York Times and the Wall Street Journal), “educating
hackers in guerrilla marketing techniques,” and “enforcing purity with an
open source certification mark.” It is important to realize, of course, that
we are well into his predicted three-to-five-year future, and none of those
things have happened. Clearly, open source zealots are going to have to
readjust their timetable for the future, if not give up on it entirely.

There are other views of software’s future, of course. Some of those views
I have expressed in the preceding material, which suggest that open source,
far from being software’s future, may be a passing fad, a Utopian-like
dream. Others simply go on about their business ignoring open source, for
the most part, participating in the proprietary software market place with
only an occasional uneasy glance over their shoulders. Still others, looking
for a safety play, are betting on both open source and proprietary software,
developing products consistent with both approaches (ironically, IBM is

Standing in Front of the Open Source Steamroller 91

one of those companies). But perhaps my most favorite view of the future
of the software field comes from Derek Burney, CEO (at the time of this
pronouncement) of Corel, a company which had elected to host its future
tools development work on the open source Linux operating system.
Responding to a question about developing open source versions of Corel’s
WordPerfect software suite, he said “We have no plans to do so.” Then he
added “In my opinion, open source makes sense for operating systems and
nothing more.”

The future of open source? It could range anywhere from “the inevitable
future of the software field” to “it’s only good for operating systems,
nothing more” to “it’s in all probability a passing fad.”

No matter how you slice it—inevitable future or passing fad—the notion
of open source software has certainly livened up the software scene, circa
2005!

92 Robert L. Glass

5 Has Open Source Software a Future?

Brian Fitzgerald

Open Source Software (OSS) has attracted enormous media and research
attention since the term was coined in February 1998. From an intellec-
tual perspective, the concept abounds with paradoxes, which makes it a
very interesting topic of study. One example is the basic premise that soft-
ware source code—the “crown jewels” for many proprietary software com-
panies—should be provided freely to anyone who wishes to see it or modify
it. Also, there is a tension between the altruism of a collectivist gift-culture
community—an “impossible public good” as Smith and Kollock (1999)
have characterized it—and the inherent individualism that a reputation-
based culture also implies. Furthermore, its advocates suggest that OSS rep-
resents a paradigm shift in software development that can solve what has
been somewhat controversially termed the “software crisis” (i.e., systems
taking too long to develop, costing too much, and not working very well
when eventually delivered). These advocates point to the quality and reli-
ability of OSS software, its rapid release schedule, and its availability at very
little or no cost. Other supporters of OSS believe that it is an initiative that
has implications well beyond the software field and suggest that it will
become the dominant mode of work for knowledge-workers in the infor-
mation society. These themes feature in the chapters in this volume by
Kelty (chapter 21) and Lessig (chapter 18) earlier, and have also been
reported by many others (Bollier 1999; Himanen 2001; Markus, Manville,
and Agres 2000; O’Reilly 2000).

However, despite these claims, a closer analysis of the OSS phenomenon
suggests that there are a complex range of problematic issues from the
triple perspectives of software engineering, general business factors, and
socio-cultural issues that serve to question the extent to which the OSS
phenomenon will even survive, let alone prosper. This chapter identifies
and discusses these challenges. This strategy of identifying these potential

“failure factors” in advance is deliberate, in that the OSS movement can
address these issues if deemed necessary.

The chapter is laid out as follows. In the next section the specific chal-
lenges from the software engineering perspective are outlined. Following
this, the potential pitfalls from the overall business perspective are dis-
cussed. Finally, the problematic issues in relation to the sociocultural
perspective are addressed. These challenges are summarized in table 5.1.

Problematic Issues from a Software Engineering Perspective

OSS is often depicted as a revolution or paradigm shift in software engi-
neering. This may be largely due to Raymond’s distinction between the
cathedral and the bazaar. Raymond chose the “cathedral” as a metaphor
for the conventional software engineering approach, generally character-

94 Brian Fitzgerald

Table 5.1
Problematic issues for OSS from software engineering, business, and sociocultural

perspectives

Problematic issues from a software engineering perspective

� OSS is not really a revolutionary paradigm shift in software engineering

� Not enough developer talent to support increased interest in OSS

� Code quality concerns

� Difficulties of initiating an OSS development project and community

� Negative implications of excessive modularity

� Insufficient interest in mundane tasks of software development

� Version proliferation and standardization problems

Problematic issues from a business perspective

� Insufficient focus on strategy in OSS development community

� “Free beer” rather than “free speech” more important to OSS mass market

� Insufficient transfer to vertical software domains

� OSS a victim of its own success

Problematic issues from a sociocultural perspective

� OSS becomes part of the establishment

� Burnout of leading OSS pioneers

� Unstable equilibrium between modesty and supreme ability required of OSS

project leaders

� “Alpha-male” territorial squabbles in scarce reputation cultures

ized by tightly coordinated, centralized teams following a rigorous devel-
opment process. By contrast, the “bazaar” metaphor was chosen to reflect
the babbling, apparent confusion of a mid-Eastern marketplace. In terms
of software development, the bazaar style does not mandate any particu-
lar development approach—all developers are free to develop in their own
way and to follow their own agenda. There is no formal procedure to
ensure that developers are not duplicating effort by working on the same
problem. In conventional software development, such duplication of effort
would be seen as wasteful, but in the open source bazaar model, it leads
to a greater exploration of the problem space, and is consistent with an
evolutionary principle of mutation and survival of the fittest, in so far as
the best solution is likely to be incorporated into the evolving software
product. This duplication of effort reveals a further aspect of OSS that
seems to set it apart from conventional software development—namely,
the replacing of the classic Brooks Law (“adding manpower to a late soft-
ware product makes it later” (Brooks 1995)) with the more colloquial so-
called Linus’s Law (“given enough eyeballs, every bug is shallow”). Brooks
had based his law on empirical evidence from the development of the
IBM 360 operating system (reckoned then to be the most complex thing
mankind had ever created). Thus, according to Brooks, merely increasing
the number of developers should exacerbate the problem rather than be a
benefit in software development. However, as already mentioned previ-
ously, proponents of the OSS model have argued that it does indeed scale
to address the elements of the so-called “software crisis.”

OSS is Not Really a Revolutionary Paradigm Shift in Software Engineering
If all the positive claims about OSS were true, then we might expect that
OSS could be categorized as a revolutionary paradigm shift for the better
in software engineering. At first glance, OSS appears to be completely alien
to the fundamental tenets and conventional wisdom of software engi-
neering. For example, in the bazaar development style, there is no real
formal design process, there is no risk assessment nor measurable goals, no
direct monetary incentives for most developers, informal co-ordination
and control, much duplication and parallel effort. All of these are anath-
ema to conventional software engineering. However, upon closer analysis,
certain well-established principles of software engineering can be seen to
be at the heart of OSS. For example, code modularity is critically impor-
tant (and also an Achilles heel, as will be discussed later). Modules must
be loosely coupled, thereby allowing distributed development in the first

Has Open Source Software a Future? 95

place. Likewise, concepts such as peer review, configuration management
and release management are taken to extreme levels in OSS, but these are
well-understood topics in traditional software engineering. In summary,
the code in OSS products is often very structured and modular in the
first place, contributions are carefully vetted and incorporated in a very
disciplined fashion in accordance with good configuration management,
independent peer review and testing. Similarly, Linux benefited a great
deal (probably too well, as the threat from the SCO Group in May 2003 to
take legal action over breach of its Unix patents would suggest) from the
evolution of Unix as problems in Unix were addressed over time
(McConnell 1999). Overall then, the extent to which OSS represents a
radical “silver bullet” in software development does not really measure up
to scrutiny.

Not Enough Developer Talent to Support Increased Interest in OSS
The main contributors of the OSS community are acknowledged to be
superbly talented “code gods,” suggested by some to be among the top five
percent of programmers in terms of their skills. Also, as they are self-
selected, they are highly motivated to contribute. The remarkable poten-
tial of gifted individuals has long been recognized in the software field.
Brooks (1987) suggests that good programmers may be a hundred times
more productive than mediocre ones. Thus, given the widely recognized
talent of the OSS leaders, the success of OSS products may not be such a
complete surprise. Indeed, it is more critical in the case of OSS, as the
absence of face-to-face interaction or other organizational cues makes it
vital that there be an ultimate arbiter whose authority and ability is pretty
much above question, and who can inspire others, resolve disputes and
prevent forking (more on this later).

However, just as OSS is not actually a paradigm shift in software engi-
neering, it is in fact somewhat reminiscent of the Chief Programmer Team
(CPT) of the 1970s (Baker 1972). While the CPT appeared to show early
promise, there just were not enough high quality programmers around to
fuel it. Similarly, the explosion of interest in OSS and the identification of
“itches to be scratched” may not be supported by the pool of development
talent available. To some extent one could argue, that this is already the
case. For example, the SourceXchange service provided by the major OSS
player, Collab.Net, which sought to create a brokering service where com-
panies could solicit OSS developers to work on their projects, actually
ceased operations in April 2001. Likewise, a study by Capiluppi et al. (2003)
of over 400 Freshmeat.net projects revealed that the majority were solo

96 Brian Fitzgerald

works with two or fewer developers, and also with little apparent vitality,
as in a follow-up study six months later, 97 percent showed no change in
version number or code size.

Code Quality Concerns
The corollary of the previous discussion is obvious. While the early OSS
pioneers may have been “best-of-breed” programmers, the eventual pro-
gramming ability of the programmers who participate in OSS could
become a problem. It is well-known that some programmers are net-
negative producers (NNP). That is, the project actually suffers from their
involvement as their contributions introduce problems into the code base
in the longer term. Unfortunately, due to the popularity of OSS, a lot of
these NNP programmers may get involved and succeed in getting their
poor quality code included, with disastrous consequences. One could argue
that OSS is more likely to be vulnerable to this phenomenon, as the formal
interviewing and recruitment procedures that precede involvement in
commercial software development are not generally part of the OSS
process, although the long probationary period served on the high-profile
OSS projects clearly serves a useful filtering purpose. However, it is by no
means certain that this process could scale to deal with increased popu-
larity of the OSS development mode. Indeed, some studies have now ques-
tioned the quality of OSS code in Linux, for example, the chapter in this
volume by Rusovan and Lawford and Parnas (chapter 6), and also an earlier
study by Stamelos et al. (2001). Other influential figures such as Ken
Thompson (1999), creator of Unix, have put the case very bluntly:

I view Linux as something that’s not Microsoft—a backlash against Microsoft, no

more and no less. I don’t think it will be very successful in the long run. I’ve looked

at the source and there are pieces that are good and pieces that are not. A whole

bunch of random people have contributed to this source, and the quality varies dras-

tically. (p. 69)

Tellingly, all these negative opinions are based on analysis of the actual
source code, rather than anecdotal opinion. Of course, one could argue
that open source is vulnerable to such criticism since the code is open,
and that the proprietary code in closed commercial systems might be no
better.

Difficulties of Initiating an OSS Development Project and Community
Increasingly, organizations might choose to release their code in an
open source fashion. However, simply making large tracts of source code

Has Open Source Software a Future? 97

available to the general development community is unlikely to be suc-
cessful, since there is then no organizational memory or persistent trace
of the design decisions through which the code base evolved to that state.
Thus, making the source code of Netscape available in the Mozilla project
was not sufficient in itself to immediately instantiate a vibrant OSS project
(although some very good OSS development tools have emerged as by-
products). In most OSS projects, changelogs and mailing lists provide a
mechanism whereby new developers can read themselves into the design
ethos of the project, in itself perhaps not the most efficient mechanism to
achieve this. Gorman (2003) describes the phenomenon in the Linux
virtual memory (VM) management subproject whereby new developers
may complain about the use of the buddy allocator algorithm, which dates
from the 1970s, for physical page allocation, as they feel the slab alloca-
tor algorithm might be better, for example. However, they fail to appreci-
ate the design rationale in the evolution of the project which led to that
choice.

Furthermore, the principle of “having a taillight to follow,” which often
guides OSS development as developers incrementally grow an initial
project, may perhaps not be robust enough for development if OSS prod-
ucts are to be produced in vertical domains where domain knowledge is
critical (an issue discussed in the next section). Linus Torvalds’s apparent
inability to successfully manage a small development team at Transmeta
(Torvalds and Diamond 2001) suggests that the concept may be too
ephemeral and individualistic to provide any continuities to general soft-
ware project management.

Negative Implications of Excessive Modularity
Modularity is necessary in OSS for a number of reasons. Firstly, as previ-
ously mentioned, it allows work to be partitioned among the global pool
of developers. Also, as projects progress, the learning curve of the rationale
behind requirements, design decisions, and so on becomes extremely
steep. Thus, to facilitate the recruitment of new contributors, developers
need to be able to reduce their learning focus below the level of the overall
project. Modularity helps achieve this; thus, it is a sine qua non for OSS.
Indeed, many OSS projects were rewritten to be more modular before they
could be successfully developed in an OSS mode, including Sendmail,
Samba, and even Linux itself (Feller and Fitzgerald 2002; Narduzzo and
Rossi 2003). However, the cognitive challenge in designing a highly
modular architecture of autonomous modules with minimal interdepen-
dencies is certainly not trivial (Narduzzo and Rossi 2003).

98 Brian Fitzgerald

Also, the increase in modularity increases the risk of one of the well-
known and insidious problems in software engineering: that of common
coupling between modules, where modules make references to variables
and structures in other modules which are not absolutely necessary. Thus,
changes to data structures and variables in seemingly unrelated modules
can have major follow-on implications. In this way, OSS systems evolve to
become very difficult, if not impossible, to maintain in the long run. Some
evidence of such a phenomenon being potentially imminent in the case
of Linux may be inferred from Rusovan, Lawford, and Parnas (chapter 6
in this volume), and also in a study of the modularity of Linux (Schach,
Jin, and Wright 2002).

Insufficient Interest in Mundane Tasks of Software Development
Many software tasks are of the mundane variety—documentation, testing,
internationalization/localization, field support. Although tedious and
mundane, these are vital, particularly as projects mature and need to be
maintained and updated by new cohorts of developers. The exciting devel-
opment tasks could be cherry-picked by OSS developers. Despite the hope
that nontechnical OSS contributors and users will undertake some of the
documentation and testing tasks, this has not really happened; certainly,
there is no parallel to the enthusiasm with which code is contributed.
However, this is perhaps understandable in a reputation-based culture,
where the concept of a “code god” exists, but that of “documentation god”
does not. The more rigorous studies of OSS developers that have been con-
ducted recently for example, those reported in earlier chapters in this
volume by Ghosh (chapter 2) and Lakhani and Wolf (chapter 1), reveal
that altruistic motives do not loom large for OSS developers, certainly if
the main beneficiaries of such effort would be outside their immediate
community. Furthermore, an earlier study by Lakhani and von Hippel
(2003) which analyzed the provision of field support for Apache suggests
that the actual cost of providing this service is much lower for developers
than one might expect, while it also provides substantial benefits to their
own work, which is a significant motivation.

Version Proliferation and Standardization Problems
The many different commercial versions of Linux already pose a substan-
tial problem for software providers developing for the Linux platform, as
they have to write and test applications developed for these various ver-
sions. Also, in the larger OSS picture, as products have been developed
more or less independently, interoperability and compatibility problems

Has Open Source Software a Future? 99

among different product versions pose very time-consuming problems.
Smith (2003) reports an exchange with an IT manager in a large Silicon
Valley firm who lamented, “Right now, developing Linux software is a
nightmare, because of testing and QA—how can you test for 30 different
versions of Linux?”

One could argue that standards are of even more critical importance to
the OSS community than to traditional proprietary development, since
the developers do not meet face-to-face, and any mechanism that can
facilitate collective action, such as the development of common standards
for integration, must be a welcome one. Indeed, Smith (2003) has written
a very compelling argument for the open source and standardization
communities to collaborate. The primary reason for the successful dis-
semination of the Internet and World Wide Web technologies has been
adherence to open standards. It is no coincidence that the key components
of the Web and Internet are open source software: the BIND domain name
server, Sendmail, the Apache web server, and so on. Standards are key to
interoperable platforms. However, the outlook on standards in OSS at
present is not altogether encouraging. There are a variety of initiatives
which are moving broadly in this direction—for example, the Free Stan-
dards Group (http://www.freestandards.org), the Linux Standard Base and
United Linux (http://www.unitedlinux.com), the Linux Desktop Consor-
tium (http://desktoplinuxconsortium.org), and the Free Desktop group
(http://www.freedesktop.org). However, these initiatives are overlapping in
some cases, and are not well integrated. Also, the agenda in some cases is
arguably not entirely to do with the establishment of open standards.

Problematic Issues from a Business Perspective

Just as there are challenges from a software engineering perspective, there
are also fundamental challenges to OSS from the overall business perspec-
tive. This is not altogether surprising, perhaps, when one considers that
the open source concept was quite literally a phenomenonal overnight
success in concept marketing that forced its way onto the Wall Street
agenda. However, its origins are largely in a voluntary hacker community,
and it is unlikely that such a community would be skilled in the cutthroat
strategic maneuvering of big business.

Insufficient Focus on Strategy in OSS Development Community
OSS represents a varied mix of participants, who have very different agenda
and motivations for participation—see chapters in this volume by Ghosh

100 Brian Fitzgerald

(chapter 2), and Lakhani and Wolf (chapter 1). Also, being loosely con-
nected and pan-globally distributed, there is not really the possibility for
the detailed strategic business planning that conventional organizations
can achieve. Indeed, there is evidence of some possibly inappropriate strate-
gic choices. For example, despite the high profile, one could argue that com-
peting with Microsoft on desktop applications—where they possess the
“category killer” application suite—is an unwise strategic use of resources in
the long term. In contrast, Microsoft has abstracted some of the better ideas
from OSS and may have muddied the water sufficiently with its “shared
source” strategy to confuse the issue as to what OSS actually represents. Rec-
ognizing the power of the social and community identification aspects of
OSS, Microsoft has introduced the Most Valued Professionals (MVP) initia-
tive, and will extend source code access to this select group. Also, their new
Open Value policy extends discretion to sales representatives to offer
extreme discounts and zero percent financing to small businesses who may
be likely to switch to OSS (Roy 2003). These strategies are clever, especially
when allied to studies that appear to show that the total cost of ownership
(TCO) of Linux is cheaper than Windows over a five-year period. It is
difficult for the OSS community to emulate this kind of nimble strategic
action. Also, the dispute between the open source and free software com-
munities over the definitional issues and the relative importance of access
to source code has not helped to present a unified front.

“Free Beer” Rather than “Free Speech” More Important to OSS Mass
Market
By and large, many software customers may not really care about the ide-
ology of free as in “unfettered” software rather than free as in “zero cost.”
This is especially salient given the downturn in the economy, and also now
that many IT budgets are being drastically reduced in the aftermath of their
increased budget allocation in the runup to 2000. For these organizations,
zero cost or almost zero cost is the critical condition. Thus, access to the
source code is not really an issue—many organizations would have neither
the competence nor even the desire to inspect or modify the source code,
a phenomenon labeled as the Berkeley Conundrum (Feller and Fitzgerald
2002). Indeed, these organizations are actually unlikely to distinguish
between open source software, shareware, public domain software, and
very cheap proprietary software (see Fitzgerald and Kenny 2003). Not
having any experience with soliciting customer or market opinion, OSS
developers are unlikely to perceive these market subtleties, and many OSS
developers may not wish to cater for the mass market anyway.

Has Open Source Software a Future? 101

Insufficient Transfer to Vertical Software Domains
The early examples of OSS products were in horizontal domains—infra-
structure software and the like. These back-office systems were deployed
by tech-savvy IT personnel who were not deterred by FUD tactics or the
lack of installation wizards to streamline the process. Also, since these were
back-office systems and didn’t require major budgetary approval, they were
generally deployed without explicit management permission. Indeed,
management might well have been very concerned at the departure from
the traditional contractual support model with the perceived benefit of
recourse to legal action in the event of failure (the legal issue is one which
we will return to later).

In these initial OSS domains, requirements and design issues were largely
part of the established wisdom. This facilitated a global developer base as
students or developers in almost any domain with programming ability
could contribute, since the overall requirements of horizontal infrastruc-
ture systems are readily apparent. Indeed, Morisio et al. 2003 suggests that
the majority of OSS projects on SourceForge are in horizontal domains,
developing software that produces other software. However, in vertical
domains, where most business software exists, the real problems are effec-
tive requirements analysis and design, and these are not well catered for
in open source. The importance of business domain expertise has long
been known (Davis and Olson 1985; Vitalari and Dickson 1983). Students
and developers without any experience in the particular domain simply
do not have the necessary knowledge of the application area to derive the
necessary requirements which are a precursor to successful development.
While much has been made of the number of OSS projects aimed at pro-
ducing ERP systems, the success of such initiatives is perhaps an open
question. The GNUe project which has been in existence for about four
years (http://www.gnuenterprise.org) has the worthy goal of developing
an OSS ERP system together with tools to implement it, and a community
of resources to support it (Elliott 2003), but whether a project that appears
(at the time of writing) to comprise 6 core developers, 18 active contri-
butors, and 18 inactive ones can fulfill its goal of producing a fully fledged
ERP system is an open question. Certainly, it seems unlikely that a large
pool of OSS hackers would perceive this as an “itch worth scratching.”

OSS a Victim of Its Own Success
Ironically, the success of the OSS phenomenon is also a source of threat to
its survival. The moral of Icarus melting his wings by flying too near the

102 Brian Fitzgerald

sun comes to mind. While OSS was a fringe phenomenon, there was a
certain safety in its relative obscurity. However, once it entered the main-
stream and threatened the livelihood of the established players, the stakes
shifted. O’Mahony (chapter 20 in this volume) identifies the incorporation
of several OSS projects as resulting from a fear of legal liability. In a liti-
gious culture, this fear appears to be well grounded, as at the time of
writing, the SCO Group had sent a letter to 1,500 Fortune 1,000 compa-
nies and 500 global corporations advising them that Linux might have
breached Unix patents owned by SCO, a potentially serious setback for
Linux and open source software in general, as it could cause organizations
to postpone deployment of open source software through fear of litigation.
However, the extra overhead of incorporation has drawbacks. O’Mahony’s
study of the GNOME project supports the view expressed by Raymond
(2001) that extra constraints are not welcome to the OSS community, as
they go against the overall hacker ethos. She reports a tension within the
GNOME development community over the fact that the GNOME Foun-
dation control the release coordination.

General Resistance from the Business Community
There have been analyses of OSS which have likened it to Mauss’s Gift
Culture (for example, chapter 22 in this volume). However, in a gift
economy, the recipient generally welcomes and accepts the gift. However,
there is some evidence that users may not welcome the gift of OSS soft-
ware. Users may fear being deskilled if they are forced to switch from
popular commercial software to OSS alternatives (Fitzgerald and Kenny
2003). Also, IT staff may also have similar concerns about potential damage
to their career prospects by switching from popular commercial products
to OSS offerings.

There are a number of possible impediments to switching to OSS alter-
natives, including the cost of transition and training, reduced productiv-
ity in the interim, and general interoperability and integration problems.
Also, the process may be more time-consuming than the average business
user is prepared to tolerate. Personally, this author is aware of an MIT-
trained engineer who worked for many years at the extremely high-tech
Xerox PARC, and despite this impeccable technological pedigree, admits
to spending about 17 hours installing a complete OSS solution of Linux
and desktop applications, a process that required much low-level inter-
vention, and he was still left with niggling interaction bugs between the
components at the end of the process. Although the user-friendliness of

Has Open Source Software a Future? 103

OSS installation is growing daily, these obscure difficulties will frustrate
users for whom time is their most precious commodity.

Problematic Issues from a Sociocultural Perspective

Finally, there is a set of challenges to OSS from the sociocultural perspec-
tive. These are possibly the most serious challenges, as they are probably
the most difficult to detect and counter in that they get to the heart of
human nature and social interaction.

OSS Becomes Part of the Establishment
Undoubtedly, OSS has been attractive for many because of its antiestablish-
ment image, and the brightest and most creative young minds have been
naturally attracted to it. Iacono and Kling (1996) identify traits, such as
being counter-cultural and challenging the status quo, as important for
technology movements. However, as OSS has become more popular and
mainstream, these bright young anarchists are likely to be far less interested.
Also, as the skill level of the contributors diminishes, the badge of pride
associated with being part of the community is greatly diminished. While
the studies in this volume by Lakhani and Wolf (chapter 1) and Ghosh
(chapter 2) do reinforce the notion of young participants in OSS projects,
Ghosh’s study reveals a more conformist family orientation as a significant
component of OSS development now. History provides several examples of
radical movements which became subsumed into the mainstream quite
quickly—French Impressionism in the nineteenth century, for example.

Also, as money enters the equation in the context of record-breaking
IPOs and huge investment by large corporations, the desire for financial
reward could further upset the equilibrium. Red Hat, trumpeted as the
patron of the open source software movement in the early days, could
become the dominant monopoly in the market-place, which would raise
its own problems. Moreover, the prices for the high-level packages and pro-
prietary add-ons, together with increasingly restrictive conditions that
some OSS providers are imposing, is increasingly bringing them in line
with commercial software (Roy 2003). This may result in an Orwellian
Animal Farm scenario, a story that began with a clear separation between
the “good” animals and the “bad” humans, but that eventually progressed
to a point where it became impossible to distinguish between the animals
and the humans. Likewise, it may become increasingly difficult to distin-
guish the notional OSS “good guys” from the notional “evil empires” of
commercial proprietary software.

104 Brian Fitzgerald

Burnout of Leading OSS Pioneers
There is an obvious danger that the leading pioneers will burn out. Not
just from the excessive workload—Linus Torvalds is estimated to receive at
least 250 emails per day concerning the Linux kernel, for example—but as
family commitments arise for a greater proportion of developers, it will be
harder to commit the time necessary to lead projects. Also, if these pio-
neers are primarily in it for the passion, challenge, freedom, and fun, then
as the phenomenon becomes more popular, these characteristics get down-
played far more. The threat of legal action has become much more of a
reality now, making OSS development a far more stressful affair than in
the past.

Unstable Equilibrium Between Modesty and Supreme Ability Required of
OSS Project Leaders
OSS pioneer developers need to be modest to ensure that others will con-
tribute. Indeed, Torvalds’s initial email posting in 1991 inviting others to
help develop Linux is a model of modesty and humility. If other potential
OSS developers think their contribution is unnecessary or would not be
welcome, they would not be motivated to help, and the project would
never get off the ground. However, in addition to modesty and self-
deprecation, OSS leaders need to be superbly talented and charismatic. The
greater the perceived talent of OSS project leaders, the less likely that their
authority will be questioned when they arbitrate on disputes, choose
between competing contributions, set the direction for the project, and
generally prevent forking. In the absence of rewards and incentives that
apply in traditional software development, the supreme authority of a
“code god” leader is important, especially given that developers may be
distributed across different cultures and countries. However, this mix of
social skills, modesty, charisma, and superb talent are not ones that are in
common supply in any area of human endeavor, let alone the software
arena.

Alpha-Male Territorial Squabbles in Scarce Reputation Culture
OSS is fundamentally a reputation-based economy, and the initiator of an
OSS project potentially attracts the greatest reputation, so egoism is very
much part of the mix. Unfortunately, as already mentioned, OSS is a male-
dominated preserve. While at some levels it is presented as a collectivist
Utopia, analysis of the mailing lists reveal a good deal of heated and robust
dissension (chap. 22 this volume). Also, Michlmayr and Hill (2003) reveal
that on the Debian project there is some resentment about the use of

Has Open Source Software a Future? 105

nonmaintainer uploads, as these are generally interpreted as a sign of the
primary maintainer not performing the task adequately. Michlmayr and
Hill report that this stigma was not a part of Debian in the past, and suggest
that it may be due to the growth of Debian from 200 to 1,000 developers.
This possibility is in keeping with the general argument here that increased
popularity and growth in OSS projects will contribute to the onset of such
problems. The potential for discord is great. Already, there have been some
complaints by OSS contributors about rejection of their code contributions
on some projects (Feller and Fitzgerald 2002).

At a higher level, the internal dispute in the OSS community itself, with
the well-publicized disagreement between the founders, does not augur
well for the successful future of the movement, especially when added to
the wrangling between the open source and free software communities
over the intricacies and fine detail of definitional issues, which are increas-
ingly less relevant as the OSS phenomenon continues to evolve.

Also, reputation may be a scarcer resource that may scale far less than
first anticipated, in that only a small handful of people may actually
achieve widespread name recognition. One of the findings of the FLOSS
study (chap. 2, this volume) was that respondents were as likely to report
knowing fictional developers (made up for the study) as much as actual
developers when it got beyond the first few well-known names. This is
likely to further stoke the flames of competition.

Conclusion

The OSS phenomenon is an interesting one with such enormous poten-
tial, not solely from the software perspectives, but also in its role as a cat-
alyst for the new organizational model in the networked economy, and as
an essential facilitator in creating the open information society and bridg-
ing the “Digital Divide.” Other chapters in this book have addressed these
issues eloquently, and it is this author’s fervent hope that the OSS phe-
nomenon survives, prospers, and delivers to its complete potential. This
chapter has been written in the spirit of promoting more critical discus-
sion of OSS and identifying the challenges that may need to be overcome.

106 Brian Fitzgerald

6 Open Source Software Development: Future or Fad?

Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

This chapter discusses the quality of Open Source Software (OSS).
Questions about the quality of OSS were raised during our effort to apply
experimental software inspection techniques (Parnas 1994b) to the ARP
(Address Resolution Protocol) module in the Linux implementation of
TCP/IP. It (1) reviews OSS development, (2) discusses that approach in the
light of earlier observations about software development, (3) explains
the role of ARP, (4) discusses problems that we observed in the Linux imple-
mentation of ARP, and (5) concludes with some tentative observations
about OSS.

Ultimately, It’s the Product that Counts

In recent decades, there have been so many problem software projects—
projects that did not produce products, produced inadequate products, or
produced products that were late or over budget—that researchers have
become very concerned about the process by which organizations develop
software. Many processes have been proposed—often with claims that they
are a kind of panacea that will greatly reduce the number of problem pro-
jects. Process researchers are generally concerned with the “people side” of
software development, looking at issues such as the organization of teams
and project management.

We sometimes seem to lose sight of the fact that a software development
process is just a means of producing a product and we should not ignore
the quality of the product. We expect more from a real software product
than that the current version “works.” We expect it to have an “architec-
ture”1 that makes it practical to correct or update the product when
changes are required.

This chapter reports on our look at one very well-known OSS product,
the Linux operating system. What we learned by studying one component

of Linux raises some important issues about the process by which it was
developed.

A Brief History of Linux

Linux was initially developed by Linus Torvalds in 1991. Linux has been
revised many times since then. The work is done by a group of volunteers
who communicate through the linux-kernel mailing list on the Internet.
Torvalds has acted as the main kernel developer and exercised some control
over the development. Commercial companies have added value by pack-
aging the code and distributing it with documentation.

Linux is a Unix-like operating system. Most of the common Unix tools
and programs can run under Linux and it includes most modern Unix fea-
tures. Linux was initially developed for the Intel 80386 microprocessor.
Over the years, developers have made Linux available on other architec-
tures. Most of the platform-dependent code was moved into platform-
specific modules that support a common interface.

Linux is a kernel; it does not include all the applications such as file
system utilities, graphical desktops (including windowing systems), system
administrator commands, text editors, compilers, and so forth. However,
most of these programs are freely available under the GNU General Public
License and can be installed in a file system supported by Linux (Bovet and
Cesati 2000).

Introduction to Open Source Software (OSS)

Linux is one of the most widely available pieces of “open source” software;
some people believe Linux and open source are synonymous. However, the
“open source” concept has been applied to many other software products.

What Is Open Source Software?
In traditional commercial software development, software is treated as
valuable intellectual property; the source code is not distributed and is pro-
tected by copyright and license agreements. Developers have gone to court
to deny government agencies the right to inspect their software, and there
have been lawsuits because a developer believed that source code had been
stolen and used without permission.

In contrast, OSS is distributed with complete source code and recipients
are encouraged to read the code and even to modify it to meet their indi-

108 Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

vidual needs. Moreover, recipients are encouraged to make their changes
available to other users, and many of their changes are incorporated into
the source code that is distributed to all users. There are many varieties of
OSS approaches, and many subtle issues about how to make them work,
but the essence is to reject the assumption that source is private property
that must be protected from outsiders.

The success of Linux and other open source products have demonstrated
that OSS distribution is workable. Some products that were once propri-
etary have become open source and some products are available in both
open source and proprietary versions.

“Brooks’s Law” and Open Source Software
In his classic work The Mythical Man Month, Fred Brooks (1995) describes
one of the fundamental facts about software development: adding more
programmers to a project doesn’t necessarily reduce time to completion;
in fact, it can delay completion.

Intuitively, it might seem that adding programmers would increase the
amount of programming that gets done (because two programmers can
write more code than one programmer), but that does not mean that the
goals of the project will necessarily be achieved sooner. A number of factors
may contribute to the phenomenon that Brooks describes:

� Unless the coding assignments have been carefully chosen, the total
amount of code written may increase as several programmers solve shared
problems with code that is not shared.
� It is not often the case that two programmers can work without com-
municating with each other. Adding programmers often increases the
number of interfaces between coding assignments (modules). Whether or
not the interfaces are defined and documented, the interfaces exist and
programmers must spend time studying them. If the interfaces are not
accurately and completely documented, programmers will spend time
consulting with other programmers or reading their code.
� Programmers must spend time implementing methods of communicat-
ing between modules.
� Often, some programmers duplicate some function already provided by
others.
� It is often necessary to change interfaces, and when this happens, the
programmers who are affected by the change must negotiate2 a new inter-
face. This process can seriously reduce the rate of progress. When two pro-
grammers are discussing their code, neither is writing more.

Assessing Open Source Software Development 109

Brooks’s observations should make us ask how open source software
development could possibly succeed. One advantage of the open source
approach is its ability to bring the effort of a worldwide legion of pro-
grammers to bear on a software development project, but Brooks’s obser-
vations suggest that increasing the number of programmers might be
counterproductive.

Two factors should be noted when considering Brooks’s observations:

� Brooks’s observations were about the development of new code, not the
analysis or revision of existing code. We see no reason not to have several
programmers review a program simultaneously. Of course, two people may
agree that the code is wrong but identify different causes and propose dif-
ferent, perhaps inconsistent, changes. As soon as we start to consider
changes, we are back in a code development situation and Brooks’s obser-
vations are relevant.
� Brooks’s observations are most relevant when the code structure does not
have well-documented module interfaces. Since the original publication
of Brooks’s observations, many programmers, (not just open source pro-
grammers) have accepted the fact that software should be modular. If the
code is organized as a set of modules with precisely documented stable
interfaces, programmers can work independently of each other; this can
ameliorate some of the problems that Brooks observed.

Open Source Software Is Not the Same as Free Software
One of the main advantages of Linux is the fact that it is “free software.”
It is important to understand that “free” means much more than “zero
price.”3 “Free” is being used as in “free spirit,” “free thought,” and perhaps
even “free love.” The software is unfettered by traditional intellectual
property restrictions.

More precisely, “free software” refers to the users’ freedom to run, copy,
distribute, study, change, and improve the software. In addition to the per-
mission to download the source code without paying a fee, the literature
identifies four freedoms, for the recipients of the software (Raymond 2001):

� The freedom to run the program, for any purpose.
� The freedom to study how the program works, and adapt it to one’s own
needs.
� The freedom to redistribute copies to others.
� The freedom to improve the program, and release improvements to the
public, in the expectation that the whole community benefits from the
changes.

110 Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

A program is considered “free” software if users have all of these free-
doms. These freedoms result (among other things) in one not having to
request, or pay for, permission to use or alter the software. Users of such
software are free to make modifications and use them privately in their
own work; they need not even mention that such modifications exist.

It is important to see that the four freedoms are independent. Source
code can be made available with limits on how it is used, restrictions on
changes, or without the right to redistribute copies. One could even make
the source available to everyone but demand payment each time that it is
used (just as radio stations pay for playing a recording).

It is also important to note that “open source” does not mean “non-
commercial.” Many who develop and distribute Linux do so for com-
mercial purposes. Even software that has the four freedoms may be made
available by authors who earn money by giving courses, selling books or
selling extended versions.

Open Source Development of Linux
The fact that all recipients are permitted to revise code does not mean that
the project needs no organization. There is a clear structure for the Linux
development process.

A significant part of the Linux kernel development is devoted to diag-
nosing bugs. At any given time, only one version (the “stable kernel”) is
considered debugged. There is another version of the kernel called the
development kernel; it undergoes months of debugging after a feature freeze.
This doesn’t mean that the kernel is inherently buggy. On the contrary,
the Linux kernel is a relatively mature and stable body of code. However,
Linux is both complex and important. The complexity means that bugs in
new code are to be expected; the importance means that a new version
should not be released before finding and correcting those bugs.

The Linux development community has a hierarchical structure; small
“clans” work on individual projects under the direction of a team leader
who takes responsibility for integrating that clan’s work with that of the
rest of the Linux developers “tribe.”

If one understands the Linux development process, the power of open
source software development becomes apparent. Open source projects can
attract a larger body of talented programmers than any one commercial
project. However, the effective use of so many programmers requires that
projects follow good coding practices, producing a modular design with
well-defined interfaces, and allowing ample time for review, testing, and
debugging.

Assessing Open Source Software Development 111

By some standards, the Linux kernel is highly modular. The division into
stable and development versions is intended to minimize interference
between teams. At a lower level, the kernel has followed a strictly modular
design, particularly with respect to the development of device drivers.
Programmers working on USB support for version 2.4 of the Linux kernel
have been able to work independently of those programmers who are
working to support the latest networking cards for the same version.
However, as we illustrate later, the interfaces between these modules are
complex and poorly documented; the “separation of concerns” is not what
it could be.

In the next section, we discuss the part of Linux that implements a part
of the TCP/IP protocol to see how well the process really worked in that
one case. We begin with a short tutorial on the protocol. It is included so
that readers can appreciate the complexity of the task and understand how
critical it is that the code be correct. The following description is only a
sketch. It has been extracted from more detailed descriptions (Steven 1994;
Comer 2000) for the convenience of the reader.

Communication Across the Internet

Programs that use physical communications networks to communicate
over the internet must use TCP/IP (Transmission Control Protocol/Inter-
net Protocol). Only if they adhere to this protocol are Internet applications
interoperable. (Details on the conventions that constitute TCP/IP can be
found in Steven 1994 and Comer 2000.)

The Internet is actually a collection of smaller networks. A subnetwork
on the Internet can be a local area network like an Ethernet LAN, a wide
area network, or a point-to-point link between two machines. TCP/IP must
deal with any type of subnetwork.

Each host on the Internet is assigned a unique 32-bit Internet Protocol
(IP) address. IP addresses do not actually denote a computer; they denote
a connection path through the network. A computer may be removed and
replaced by another without changing the IP address. However, if a host
computer is moved from one subnetwork to another, its IP address must
change.

Local network hardware uses physical addresses to communicate with
an individual computer. The local network hardware functions without ref-
erence to the IP address and can usually function even if the subnetwork
is not connected to the internet. Changes within a local network may
result in a change in the physical address but not require a change in the
IP address.

112 Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

Address Resolution Protocol (ARP)
The Address Resolution Protocol (ARP) converts between physical addresses
and IP addresses. ARP is a low-level protocol that hides the underlying
physical addressing, permitting Internet applications to be written without
any knowledge of the physical structure. ARP requires messages that travel
across the network conveying address translation information, so that data
is delivered to the right physical computer even though it was addressed
using an IP address.

When ARP messages travel from one machine to another, they are
carried in physical frames. The frame is made up of data link layer
“packets.” These packets contain address information that is required by
the physical network software.

The ARP Cache To keep the number of ARP frames broadcast to a
minimum, many TCP/IP protocol implementations incorporate an ARP
cache, a table of recently resolved IP addresses and their corresponding
physical addresses. The ARP cache is checked before sending an ARP
request frame.

The sender’s IP-to-physical address binding is included in every ARP
broadcast: receivers update the IP-to-physical address binding information
in their cache before producing an ARP packet.

The software that implements the ARP is divided into two parts: the first
part maps an IP address to a physical address (this is done by the arp_map
function in the Linux ARP module) when sending a packet, and the second
part answers ARP requests from other machines.

Processing of ARP Messages ARP messages travel enclosed in a frame of
a physical network, such as an Ethernet frame. Inside the frame, the packet
is in the data portion. The sender places a code in the header of the frame
to allow receiving machines to identify the frame as carrying an ARP
message.

When the ARP software receives a destination IP address, it consults its
ARP cache to see if it knows the mapping from the IP address to physical
address. If it does, the ARP software extracts the physical address, places
the data in frame using that address, and sends the frame (this is done by
the arp_send function in the Linux ARP module). If it does not know
the mapping, the software must broadcast an ARP request and wait for
reply (this is done by arp_set, a predefined function in the Linux ARP
module).

During a broadcast, the target machine may be temporarily malfunc-
tioning or may be too busy to accept the request. If so, the sender might

Assessing Open Source Software Development 113

not receive a reply or the reply might be delayed. During this time, the
host must store the original outgoing packet so it can be sent once the
address has been resolved. The host must decide whether to allow other
application programs to proceed while it processes an ARP request (most
do). If so, the ARP software must handle the case where an application gen-
erates an additional ARP request for the same address.

For example, if machine A has obtained a binding for machine B and
subsequently B’s hardware fails and is replaced, A may use a nonexistent
hardware address. Therefore it is important to have ARP cache entries
removed after some period.

When an ARP packet is received, the ARP software first extracts the
sender’s IP and hardware addresses. A check is made to determine whether
a cache entry already exists for the sender. Should such a cache entry be
found for the given IP address, the handler updates that entry by rewrit-
ing the physical address as obtained from the packet. The rest of the packet
is than processed (this is done by the arp_rcv function in the Linux ARP
module).

When an ARP request is received, the ARP software examines the target
address to ascertain whether it is the intended recipient of the packet. If
the packet is about a mapping to some other machine, it is ignored. Oth-
erwise, the ARP software sends a reply to the sender by supplying its phys-
ical hardware address, and adds the sender’s address pair to its cache (if it’s
not already present). This is done by the arp_req_get and arp_req_set
functions in the Linux ARP module.

During the period between when a machine broadcasts its ARP request
and when it receives a reply, additional requests for the same address may
be generated. The ARP software must remember that a request has already
been sent and not issue more.

Once a reply has been received and the address binding is known, the
relevant packets are placed into a frame, using the address binding to fill
the physical destination address. If the machine did not issue a request for
an IP address in any reply received, the ARP software updates the sender’s
entry in its cache (this is done by the arp_req_set function in the Linux
ARP module), then stops processing the packet.

ARP Packet Format ARP packets do not have a fixed format header. To
make ARP useful for a variety of network technologies, the length of fields
that contain addresses is dependent upon the type of network being used.
To make it possible to interpret an arbitrary ARP message, the header
includes fixed fields near the beginning that specify the lengths of the

114 Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

addresses found in subsequent fields of the packet. The ARP message format
is general enough to allow it to be used with a broad variety of physical
addresses and all conceivable protocol addresses.

Proxy ARP Sometimes it is useful to have a device respond to ARP broad-
casts on behalf of another device. This is particularly useful on networks
with dial-in servers that connect remote users to the local network. A remote
user might have an IP address that appears to be on the local network, but
the user’s system would not be reachable when a message is received,
because it is actually connected intermittently through a dial-in server.

Systems that were trying to communicate with this node would not
know whether the device was local, and would use ARP to try and find the
associated hardware address. Since the system is remote, it does not
respond to the ARP lookups; instead, a request is handled through Proxy
ARP, which allows a dial-in server to respond to ARP broadcasts on behalf
of any remote devices that it services.

Concurrency and Timing
In reading the previous sketch of the implementation of ARP, it must be
remembered that this protocol is used for communication between com-
puters on a network, and that many processes are active at the same time.
There is concurrent activity on each computer and the computers involved
are communicating concurrently. Opportunities for deadlocks and “race
conditions” abound. Certain processes will time-out if the communication
is too slow. Moreover, rapid completion of this communication is essen-
tial for acceptable performance in many applications.

Linux ARP Kernel Module

The Linux ARP kernel protocol module implements the Address Resolu-
tion Protocol. We have seen that this is a very complex task. The respon-
sible module must perform the task precisely as specified, because it will
be interacting with other computers that may be running different oper-
ating systems. One would expect this module to be especially well written
and documented. This section reports on our review of this code.

Analysis of the ARP Module
Linux implements ARP in the source file net/ipv4/arp.c, which con-
tains nineteen functions. They are arp_mc_map, arp_constructor,
arp_error_report, arp_solicit, arp_set_predefined, arp_find,

Assessing Open Source Software Development 115

arp_bind_neighbour, arp_send, parp_redo, arp_rcv, arp_req_set,
arp_state_to_flags, arp_req_get, arp_req_delete, arp_ioctl,
arp_get_info, arp_ifdown, initfunc, and ax2asc.

Linux ARP as a Module

We wanted to evaluate the ARP module4 because it is a critical component
of the operating system for most users, because it is inherently complex,
and because it has to be correct. We expected to find a structure that allows
modules to be designed, tested, and changed independently; that is, a
structure in which you can modify the implementation of one module
without looking at the internal design of others. This condition requires
that the modules’ interfaces5 be well documented, easily understood, and
designed so that it need not change if there are changes in its implemen-
tation or internal interfaces with hardware and other modules. Every well
defined module should have an interface that provides the only means to
access the services provided by the module.

We found the Linux networking code difficult to read. One problem was
the use of function pointers. To understand the code and the dereferenc-
ing of a function pointer, it is necessary to determine when, where, and
why the pointer was set. A few lines of comment directing people in this
regard would have been incredibly helpful. Without them, one is required
to search the full code in order to be able to understand portions of it.
Such situations have negative implications for both reliability and secu-
rity. Unless they have already become familiar with it, Linux TCP/IP code
is difficult for even the most experienced programmers.

We found nothing that we could identify as a precise specification of the
module and nothing that we consider to be good design documentation.6

This is a serious fault. Even if one has read all the code and understands
what it does, it is impossible to deduce from the code what the expected
semantics of an interface are. We cannot deduce the requirements unless
we assume that the code is 100% correct, will never change, and all of the
properties of the code are not required by programs that interact with it.
The inability to distinguish between required properties and incidental
properties of the present code will make it difficult to write new versions
of the kernel.

With properly documented interfaces, it would be possible to find bugs
by confirming that the code on both sides of an interface obeys the doc-
umented semantics; a programmer would not need gness what each com-
ponent was intended to do.

116 Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

The Linux ARP module includes 31 different header files; most of them
are long, ranging from a few hundred to a few thousand lines. It was very
difficult to investigate all of them and find connections between every
function in the ARP module and other functions inside and outside the
module. Functions from the ARP module call functions from other
modules. It is not a problem to find the functions that are directly invoked,
but often those functions call some other functions in some other module.
There are many indirect invocations resulting in many potential cycles.
Some of those functions return values, most of which are not explained.
We are not told what the returned values represent, and cannot even
find some reasonable comment about them. We can only guess what they
represent.

Many of the header files are implemented in other source modules. Since
all calls to functions are interpreted using header files, it is impossible to
understand and check the ARP source module without looking at the inter-
nals of other modules.

Design and Documentation Problems in the Linux ARP Module

Concrete Examples
The source file neighbour.c, in net/core/neighbour.c, includes 40
functions. Only ten of them are called by arp functions from the arp.c
module. Those ten functions call many other functions. It is unreasonably
hard to determine how those ten functions interact with the other thirty.
These functions are:

� neigh_if down (this function is called by arp_ifdown)
� neigh_lookup (this function is called by arp_find)
� pneigh_lookup (this function is called by arp_rcv)
� pneigh_delete (this function is called by arp_req_delete)
� neigh_update (this function is called by arp_rcv)
� neigh_event_ns (this function is called by arp_rcv)
� pneigh_enqueue (this function is called by arp_rcv)
� neigh_table_init (this function is called by init_func)
� neigh_app_ns (this function is called by arp_rcv)
� neigh_sysctl_register (this function is called by init_func)

Just one neighbour.c function is called from the arp.c module:
neigh_ifdown (struct neigh_table *tbl, struct device*dev)
then calls the next functions: atomic read (andtbl Æ lock),
start_bh_atomic (), atomic_read (andn Æ refcnt), deltimer

Assessing Open Source Software Development 117

(andn Æ timer), neigh_destroy (n), deltimer (andtbl Æ
proxy_queue).

None of these functions are explained or documented. All of them con-
tinue to call other functions without any kind of guidance to people who
are trying to understand code. We found several books and papers about
this code (for instance, Bovet and Cesati 2000), but none of them answer
questions in detail.

The source file neighbour.c also includes 11 different header files
but 7 of them (linux/config.h, linux/types.h, linux/kernel.h,
linux/socket.h, linux/sched.h, linux/netdevice.h, and net/

sock.h) are the same ones that are included in the arp.c source file. That
makes the interface unnecessarily big and complex. The arp.c module
(that is, Linux C networking code) is also complex; 19 ARP functions call
114 different functions outside of the module arp.c.

Some of arp.c functions—arp_set_predefined (13 different calls),
arp_rcv (16 different calls), arp_ioctl (9 different calls), arp_get info
(10 different calls)—are especially difficult for handling and understanding.

The file arp.h should declare the interface for the ARP module. It
appears to declare eight access functions. However, it also includes two
other header files, which then in turn include additional header files. A
simplified version of the includes hierarchy resulting from arp.h is repre-
sented in figure 6.1. The actual includes hierarchy is more complicated, as
22 files that are included only from the file sched.h have been summa-
rized as a single node in the graph in order to improve the figure’s read-
ability. Once the transitive closure of the includes is taken into account,
file arp.h includes an additional 51 header files!

One of the two “includes” that appear explicitly in file arp.h declares
the interface for the file net/neighbour.h, which contains the interface
declarations and data structure from the net/core/neighbour.c code
used by the ARP module. That one file contains approximately 36 func-
tion prototypes.7 Many of the other header files not explicitly included in
arp.h also contain additional function prototypes. In our view, this file
illustrates a thoroughly unprofessional style of programming and docu-
mentation, violating the principles of information hiding by making all of
the access functions and many of the data structures from lower-level
modules implicitly available to any module using the ARP module.

Impressions
Our impression is that the whole hierarchy and relation between source
modules (*.c) could be simpler. Lots of functions and header files are

118 Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

Assessing Open Source Software Development 119

ar
p

by
te

or
de

r

sy
st

em
an

ot
he

r_
19

_f
ile

s

if_
ar

p

co
nf

ig
m

sr
re

so
ur

ce

ne
ig

hb
ou

r

pr
of

ile
sc

he
d

tim
er

ne
td

ev
ic

e

in
te

rr
up

t

sp
in

lo
ck

pr
oc

es
so

r

at
om

ic

no
tif

ie
r

m
m

sk
bu

ff

ty
pe

s

hi
gh

m
em

if

so
ck

et

sm
p

if_
et

he
r

au
to

co
nf

bi
to

ps

if_
pa

ck
et

tim
e

pt
ra

ce

ca
ch

e

ke
rn

el

er
rn

o

Fi
g

u
re

 6
.1

In
cl

u
d

es
 h

ie
ra

rc
h

y
fo

r
ar

p
.h

 fi
le

redundant and too repetitive. However, in code of this sort, without help
of documentation, anyone would be afraid to make the changes.

Analyzing the ARP module felt like walking through a dark forest
without a map. There were no directions explaining what given functions
are really doing or clear explanations about their connections to another
modules. It was not possible to understand most of the written code and
it was not possible to define ARP as a module in the sense that we described
at the beginning of this section.

Conclusions

Nobody should draw conclusions about a software development method
by looking at one example. However, one example should raise questions
and act as a warning.

The ARP is a critical module in any modern operating system and must
conform precisely to a set of complex rules. Because it serves as an inter-
face with other computers, it is likely that it will have to be changed when
network standards are improved. It is reasonable to expect this module to
be of the highest quality, well structured, well documented and as “lean”
as possible.

Our examination of the Linux ARP code has revealed quite the opposite.
The code is poorly documented, the interfaces are complex, and the
module cannot be understood without first understanding, what should
be internal details of other modules. Even the inline comments suggest
that changes have been made without adequate testing and control. A
cursory examination of the same module in operating systems that were
developed by conventional (strictly controlled source code) methods did
not show the same problems.

Nothing that we found in examining this code would suggest that the
process that produced it should be used as a model for other projects. What
we did find in this case is exactly what Fred Brooks’s more than three-
decades-old observations would lead us to expect. The attraction of OSS
development is its ability to get lots of people to work on a project, but
that is also a weakness. In the absence of firm design and documentation
standards, and the ability to enforce those standards, the quality of the
code is likely to suffer. If Linus Torvalds and the core developers were no
longer participating in the Linux kernel project, we would expect that the
Linux kernel could be reliably enhanced and modified only if an accurate,
precise, and up-to-date description of its architecture and interfaces were
always available. Without this, the changes are not likely to maintain the

120 Srdjan Rusovan, Mark Lawford, and David Lorge Parnas

conceptual integrity needed to prevent deterioration of the software
(Parnas 1994b).

Notes

1. For the purpose of this chapter, we will consider the “architecture” to be (1) the

division of the software into modules, (2) the interfaces between those modules,

and (3) the uses relation between the externally accessible programs of those modules

(Parnas 1979; Parnas, Clements, and Weiss, 1985).

2. In some cases, revised interfaces are dictated by the most powerful party, not

negotiated.

3. In fact, many who acquire Linux pay a (relatively small) price for a “distribution”

and some pay additional amounts for support such as documentation and advice

about that version of Linux.

4. We use the word module to refer to a work assignment for a programmer or team

(Parnas 1979).

5. The interface between two modules comprises all of the information about one

module that would be needed to verify that the other was correct. Information about

a module that is not included in the interface is considered to be internal imple-

mentation information.

6. The protocol itself is, of course, the subject of specification documents. However,

even correct implementations of the protocol can differ internally. We were looking

for specific documents of the Linux code components.

7. 1/3 of them are simple inline access functions.

Assessing Open Source Software Development 121

7 Attaining Robust Open Source Software

Peter G. Neumann

“Is open source software inherently better than closed-source proprietary
software?” This is a question that is frequently heard, with various
intended meanings of “better.” As a particularly demanding case, let us
consider critical applications with stringent requirements for certain attrib-
utes such as security, reliability, fault tolerance, human safety, and surviv-
ability, all in the face of a wide range of realistic adversities—including
hardware malfunctions, software glitches, inadvertent human actions,
massive coordinated attacks, and acts of God. In addition, let’s toss in
operational requirements for extensive interoperability, evolvability,
maintainability, and clean interface design of those systems, while still
satisfying the critical requirements. In this context, we are interested in
developing, operating, and using computer systems that are robust and
easily administered.

To cut to the chase, the answer to the simple question posed in the first
sentence is simple in concept, but decidedly not so simple in execution:
Open source software is not intrinsically better than closed-source propri-
etary software. However, it has the potential for being better if its devel-
opment process addresses many factors that are not normally experienced
in mass-market proprietary software, such as the following:

� Well-defined and thoroughly evaluated requirements for system and
application behavior, including functional requirements, behavioral
requirements, operational requirements, and—above all—a realistic range
of security and reliability requirements.
� System and network architectures that explicitly address these require-
ments. Sound architectures can lead to significant cost and quality bene-
fits throughout the development and later system evolution.
� A system development approach that explicitly addresses these require-
ments, pervasively and consistently throughout the development.

� Use of programming languages that are inherently able to avoid many
of the characteristic flaws (such as buffer overflows, type mismatches, wild
transfers, concurrency flaws, and distributed-system glitches) that typically
arise in unstructured, untyped, and error-prone languages and that seem
to prevail over decades, through new system releases and new systems.
� Intelligent use of compilers and other development tools that help in
identifying and eliminating additional flaws. However, sloppy program-
ming can subvert the intent of these tools, and thus good programming
practice is still invaluable.
� Extensive discipline on the part of designers, implementers, and man-
agers throughout the entire software development process. This ultimately
requires better integration of architecture, security, reliability, sound pro-
gramming techniques, and software engineering into the mainstream of
our educational and training programs.
� Pervasive attention to maintaining consistency with the stated require-
ments throughout operation, administration, and maintenance, despite
ongoing system iterations. Some combination of formal and informal
approaches can be very helpful in this regard.

Conceptually, many problems can be avoided through suitably chosen
requirements, architectures, programming languages, compilers, and other
analysis tools—although ultimately, the abilities of designers and pro-
grammers are a limiting factor.

The answer to the initially posed question should not be surprising to
anyone who has had considerable experience in developing software that
must satisfy stringent requirements. However, note that although the same
discipline could be used by the developers of closed-source software, mar-
ketplace forces tend to make this much more difficult than in the open-
source world. In particular, there seems to be an increasing tendency
among the mass-market proprietary software developers to rush to market,
whether the product is ready or not—in essence, letting the customers be
the beta testers. Furthermore, efforts to reduce costs often seem to result
in lowest-common-denominator products. Indeed, satisfying stringent
requirements for security and reliability (for example) is generally not a
goal that yields maximum profits. Thus, for practical reasons, I conclude
that the open-source paradigm has significant potential that is much more
difficult to attain in closed-source proprietary systems.

The potential benefits of nonproprietary nonclosed-source software also
include the ability to more easily carry out open peer reviews, add new
functionality either locally or to the mainline products, identify flaws, and

124 Peter G. Neumann

fix them rapidly—for example, through collaborative efforts involving
people irrespective of their geographical locations and corporate alle-
giances. Of course, the risks include increased opportunities for evil-doers
to discover flaws that can be exploited, and to insert trap doors and Trojan
horses into the code. Thus a sensible environment must have mechanisms
for ensuring reliable and secure software distribution and local system
integrity. It must also make good use of good system architectures, public-
key authentication, cryptographic integrity seals, good cryptography, and
trustworthy descriptions of the provenance of individual components and
who has modified them. Further research is needed on systems that can
be predictably composed out of evaluated components or that can sur-
mount some of the vulnerabilities of the components. We still need to
avoid design flaws and implementation bugs, and to design systems that
are resistant to Trojan horses. We need providers who give real support;
warranties on systems today are mostly very weak. We still lack serious
market incentives. However, despite all the challenges, the potential ben-
efits of robust open-source software are worthy of considerable collabora-
tive effort.

For a further fairly balanced discussion of the relative advantages and
disadvantages with respect to improving security, see five papers (Lipner
2000; McGraw 2000; Neumann 2000; Schneider 2000; and Witten et al.
2000) presented at the 2000 IEEE Symposium on Security and Privacy. The
session was organized and chaired by Lee Badger. These contributions all
essentially amplify the pros and/or cons outlined here. Lipner explores
some real benefits and some significant drawbacks. McGraw states flatly
that “openish” software will not really improve security. Schneider notes
that “the lion’s share of the vulnerabilities caused by software bugs is easily
dealt with by means other than source code inspections.” He also consid-
ers inhospitability with business models. The Witten paper explores eco-
nomics, metrics, and models. In addition, Neumann’s Web site includes
various papers and reports that can be helpful in achieving the goals of
system development for critical requirements, with particular attention to
the requirements, system and network architectures, and development
practices. In particular, see Neumann 2004 for a report for DARPA (sum-
marized briefly in Neumann 2003a) on the importance of architectures in
attaining principled assuredly trustworthy composable systems and net-
works, with particular emphasis on open source but with general applica-
bility as well. That report is part of the DARPA CHATS program on
composable high-assurance trusted systems, which is seriously addressing
many of the promising aspects of making open-source software much more

Attaining Robust Open Source Software 125

robust. Furthermore, see the archives of the ACM Risks Forum
(http://www.risks.org), a summary index (Neumann 2003b) to countless
cases of systems that failed to live up to their requirements, and an analy-
sis of many of these risks cases and what needs to be done to minimize
the risks (Neumann 1995). It is an obvious truism that we should be learn-
ing not to make the same mistakes so consistently. It is an equally obvious
truism that these lessons are not being learned—most specifically with
respect to security, reliability, survivability, interoperability, and many
other “-ilities.”

126 Peter G. Neumann

8 Open and Closed Systems Are Equivalent

(That Is, in an Ideal World)

Ross Anderson

People in the open source and free software community often argue that
making source code available to all is good for security. Users and experts
can pore over the code and find vulnerabilities: “to many eyes, all bugs are
shallow,” as Eric Raymond (2001, 41) puts it. This idea is not entirely new.
In the world of cryptography, it has been standard practice since the nine-
teenth century to assume that the opponent knows the design of your
system, so the only way you can keep him out is by denying him knowl-
edge of a temporary variable, the key (Kerckhoffs 1883).

However, open design is not an idea that everyone accepts, even now.
Opponents of free software argue that “if the software is in the public
domain, then potential hackers have also had the opportunity to study the
software closely to determine its vulnerabilities” (Brown 2002). This issue
is now assuming economic and political importance, as the antitrust
settlement between Microsoft and the Department of Justice compels
Microsoft to make a lot of information about interfaces available to its
competitors—but with the provision that data whose disclosure might pre-
judice security may be withheld (Collar-Kotelly 2002). Unsurprisingly,
Microsoft is now discovering that many more aspects of its systems are
security-relevant than had previously been thought.

There is a related issue: whether information about discovered vulnera-
bilities may be published. In February 2003, Citibank obtained an injunc-
tion prohibiting any reporting of security vulnerabilities of automatic teller
machine systems disclosed by myself and two colleagues at a trial which
we were attending as expert witnesses. This was counterproductive for the
bank, as it compelled us to publish our attacks in an invited talk and a
technical report in the days just before the gagging hearing. We were slash-
dotted and the technical report was downloaded over 110,000 times
(Anderson and Bond 2003; Bond and Zielinski 2003). But this is unlikely
to be the last time that gagging orders are used against security

vulnerabilities; if anything, the Digital Millennium Copyright Act and the
proposed European Union Directive on the enforcement of intellectual
property rights (http://europa.eu.int/comm/internal_market/en/indprop/
piracy/index.htm) will make them even more common.

So there is growing public interest in the question of whether openness
is of more value to the attacker or the defender. This question is much
more general than whether software source code should be available to
users. A wide range of systems and components can be either easier or more
difficult to test, inspect, and repair, depending on the available tools and
access. Hardware devices can often be reverse engineered with surprisingly
little effort—although the capital resources needed to fabricate a com-
patible clone might be scarce. The difference between “open” and “closed”
may also be legal rather than technical; if laws prohibit the reporting of
defects, or the manufacture of compatible products, this can have much
the same effect as logical or physical tamper-resistance. So in what follows
I will consider “open systems” versus “closed systems,” which differ simply
in the difficulty in finding and fixing a security vulnerability.

In May 2002, I proved a controversial theorem (Anderson 2002): under
the standard assumptions of reliability growth theory, it does not matter
whether the system is open or closed. Opening a system enables the
attacker to discover vulnerabilities more quickly, but it helps the defend-
ers exactly as much.

This caused consternation in some circles, as it was interpreted as a
general claim that open systems are no better than closed ones. But that
is not what the theorem implies. Most real systems will deviate in impor-
tant ways from the standard reliability growth model, and it will often be
the case that open systems (or closed systems) will be better in some par-
ticular application. My theorem lets people concentrate on the differences
between open and closed systems that matter in a particular case.

An Illustration: Auction Equivalence

Computer scientists are familiar with some kinds of equivalence theorem.
For example, Turing’s work teaches us that in some sense, all computers
are equal. A machine that is Turing-powerful can be used to simulate any
other such machine; a TRS-80 can in theory emulate an Ultrasparc CPU.
But no computerist would interpret that to mean that any old toy com-
puter can take over the hosting of our university’s research grant database.

The equivalence of open and closed systems is a different kind of result,
more like the equivalence results one finds in economics. To illustrate how

128 Ross Anderson

such results tend to work, let’s consider the revenue equivalence theorem
in auction theory.

Auctions have been around for thousands of years, and have long been
a standard way of selling things as diverse as livestock, fine art, mineral
rights, and government bonds. How to run them has recently become a
hot topic among both technologists and economists. Huge amounts have
been raised in many countries from spectrum auctions, and eBay has
become one of the most successful Internet companies. Auctions are also
proposed as a means of allocating scarce resources in distributed systems.
However, it’s not always obvious how to design the most appropriate type
of auction. Consider the following three schemes.

1. In the sealed-bid auction, everyone submits a sealed envelope contain-
ing their bid. The auctioneer opens them and awards the contract to the
highest bidder.
2. In the English auction, the auctioneer starts out the bidding at some
reserve price, and keeps on raising it until one bidder remains, who is the
winner. The effect of this is that the bidder who places the highest valua-
tion on the contract wins, but at the valuation of the next-highest bidder
(plus the bid increment).
3. The all-pay auction is similar to the English auction, except that at each
round all the bidders have to pay the current price. Eventually, there is
only one bidder left, who gets the contract—but the losers don’t get a
refund. (This scheme models what happens in litigation, or in a symmet-
ric war of attrition.)

The fundamental result about auctions is the revenue equivalence theorem,
which says that under ideal conditions, you get the same revenue from
any well-behaved auction (Klemperer 1999). The bidders will adjust their
strategies to the rules set by the auctioneer, and the auctioneer will end up
with the same amount of money on average.

Yet, in practice, the design of auctions matters enormously. During the
recent spectrum auctions, for example, very small changes in the rules
imposed by different governments led to huge differences in outcomes.
The UK and Danish governments raised large amounts of money, while
the Dutch and the Austrians got peanuts. How can this be squared with
theory?

The simple answer is that auctions are often not well behaved, and con-
ditions are rarely ideal. For example, revenue equivalence assumes that
bidders are risk-neutral—they are indifferent between a certain profit of $1
billion and a 50 percent chance of a profit of $2 billion. But established

Open and Closed Systems Are Equivalent 129

phone companies may be risk-averse, seeing a failure to secure bandwidth
for 3G mobiles as a strategic threat to their company’s existence, and may
therefore be ready to pay more at a sealed-bid auction out of defensive-
ness. Another problem is that bidders were often able to abuse the auction
process to signal their intentions to each other (Klemperer 2002). Yet
another is entry deterrence; incumbents in an industry may be able to scare
away new entrants by a variety of tactics. Yet another is that if the private
information of the bidders is correlated rather than independent, the
English auction should raise more money than the sealed-bid auction
(Milgrom and Weber 1982). Yet another is that if some of the bidders have
budgetary constraints, the all-pay auction may raise more money (a nice
explanation from economic theory of why litigation consumes such a large
share of America’s GDP).

So the revenue equivalence theorem is important for auction designers.
It should not be seen as establishing the conditions under which auction
rules don’t matter, so much as identifying those conditions that do matter.

With this insight, let’s return to the equivalence of open and closed
systems. First, we’ll take a look at the standard assumptions and results of
reliability growth theory.

Security Reliability Growth

Safety-critical software engineers have known for years that for a large,
complex system to have a mean time to failure (MTTF) of 100,000 hours,
it must be subject to at least that many hours of testing (Butler and Finelli
1991). This was first observed by Adams (1984) in a study of the bug history
of IBM mainframe operating systems, and has been confirmed by exten-
sive empirical investigations since. The first theoretical model explaining
it was published by Bishop and Bloomfield (1996), who proved that under
standard assumptions this would be the worst-case behavior. Brady,
Anderson, and Ball (1999) tightened this result by showing that, up to a
constant factor, it was also the expected behavior.

Such reliability growth models were developed for software reliability in
general, but they can be applied to bugs of any particular type, such as
defects that might cause loss of life, or loss of mission, or the breach of a
security policy. They require only that there are enough bugs for statisti-
cal arguments to work, and that a consistent definition of “bug” is used
throughout.

When we test software, we first find the most obvious bugs—that is, the
bugs with the lowest mean time to failure. After about ten minutes, we

130 Ross Anderson

might find a bug with a ten-minute MTTF. Then after half an hour we
might get lucky and find a bug with an MTTF of forty-two minutes, and
so on. In a large system, luck cancels out and we can use statistics. A hand-
waving argument would go as follows: after a million hours of testing, we’d
have found all the bugs with an MTTF of less than a million hours, and
we’d hope that the software’s overall reliability would be proportional to
the effort invested.

Reliability growth models seek to make this more precise. Suppose that
the probability that the ith bug remains undetected after t random tests is
e-Eit. The Brady-Anderson-Ball model cited above shows that, after a long
period of testing and bug removal, the net effect of the remaining bugs
will under certain assumptions converge to a polynomial rather than
exponential distribution. In particular, the probability E of a security failure
at time t, at which time n bugs have been removed, is

(1)

over a wide range of values of t. In the appendix to this chapter, I sketch
the proof of why this is the case. For present purposes, note that this
explains the slow reliability growth observed in practice. The failure time
observed by a tester depends only on the initial quality of the code (the
constant of integration K) and the time spent testing it thus far.

Does this theory apply to security vulnerabilities? Recently, Rescorla
(2004) has studied the available bug databases and concluded that the rate
at which vulnerabilities are depleted by discovery is very low. The visual
trends one can see for bugs introduced in any particular year and then dis-
covered in subsequent years show a slow decline; and in fact, once one
allows for possible sampling bias, it is even possible that the rate of vul-
nerability discovery is constant. The available data support the assumption
that vulnerabilities can be considered independent, and are consistent with
the model’s prediction of very slow reliability growth as a result of
vulnerability discovery and removal. The numbers of vulnerabilities per
product (dozens to low hundreds) are also sufficient for statistical assump-
tions to hold.

Equivalence of Open and Closed Systems

Consider now what happens if we make the tester’s job harder. Suppose
that after the initial alpha testing of the product, all subsequent testing is
done by beta testers who have no access to the source code, but can only

E e K tE t

i n

i= ª-

= +

•

Â
1

Open and Closed Systems Are Equivalent 131

try out various combinations of inputs in an attempt to cause a failure. If
this makes the tester’s job on average l times harder—the bugs are l times
more difficult to find—then the probability that the ith bug remains unde-
tected becomes e-Eit/l, and the probability that the system will fail the next
test is

(2)

In other words, the system’s failure rate has just dropped by a factor of l,
just as we would expect.

However, what if all the testing to date had been carried out under the
more difficult regime? In that case, only 1/l the amount of effective testing
would have been carried out, and the l factors would cancel out. Thus the
failure probability E would be unchanged.

Going back to our intuitive argument, making bugs five times more dif-
ficult to find will mean that we now work almost an hour to find the bug
whose MTTF was previously 10 minutes, and over three hours for the 42-
minute bug (Fenton and Neil (1999) suggest that l lies between 3 and 5
for mature systems). But the reliability of software still grows as the time
spent testing, so if we needed 10,000 hours of testing to get a 10,000-hour-
MTTF product before, that should still hold now. We will have removed a
smaller set of bugs, but the rate at which we discover them will be the
same as before.

Consider what happens when proprietary software is first tested by insid-
ers with access to source code, then by outsiders with no such access. With
a large commercial product, dozens of testers may work for months on the
code, after which it will go out for beta testing by outsiders with access to
object code only. There might be tens of thousands of beta testers, so even
if l were as large as 100, the effect of the initial, open, alpha-testing phase
will be quickly swamped by the very much greater overall effort of the beta
testers.

Then a straightforward economic analysis can in principle tell us the
right time to roll out a product for beta testing. Alpha testers are more
expensive, being paid a salary; as time goes on, they discover fewer bugs
and so the cost per bug discovered climbs steadily. At some threshold,
perhaps once bug removal starts to cost more than the damage that bugs
could do in a beta release product, alpha testing stops. Beta testing is much
cheaper; testers are not paid (but may get discounted software, and still
incur support costs). Eventually—in fact, fairly quickly—the beta test effort
comes to dominate reliability growth.

E e K tE t

i n

i= ª-

=

•

Â l l

132 Ross Anderson

So, other things being equal, we expect that open and closed systems
will exhibit similar growth in reliability and in security assurance. This
assumes that there are enough bugs to do statistics, that they are inde-
pendent and identically distributed, that they are discovered at random,
and that they are fixed as soon as they are found.

Symmetry Breaking

This analysis does not of course mean that, in a given specific situation,
proprietary and open source are evenly matched. A vendor of proprietary
software may have exogenous reasons for not making source code avail-
able. Microsoft managers once argued that they feared an avalanche of law-
suits by people holding software patents with little or no merit, but who
hoped to extract a settlement by threatening expensive litigation. The
technical assumptions of reliability growth theory could also fail to hold
for many reasons, some of which I’ll discuss below. If the analogy with the
revenue equivalence theorem is sound, then this is where we expect the
interesting economic and social effects to be found.

Even though open and closed systems are equally secure in an ideal
world, the world is not ideal, and is often adversarial. Attackers are likely
to search for, find, and exploit phenomena that break the symmetry
between open and closed models. This is also similar to the auction theory
case; phone companies spent considerable sums of money on hiring
economists to find ways in which spectrum auctions could be gamed
(Klemperer 2002).

Transients
Transient effects may matter, as K/t holds only at equilibrium. Suppose
that a new type of abstract attack is found by an academic researcher
and published. It may be simple to browse the GNU/Linux source code
to see whether it can be applied, but much more complex to construct
test cases, write debugging macros, and so on to see whether an exploit
can be made for Windows. So there may be time-to-market issues for the
attacker.

According to Adams (1984), IBM fixed mainframe operating system
bugs the eighth time they were reported, while Leung (2002) studied the
optimal frequency of security updates from the customer perspective.
Because of the risk that applying a service pack may cause critical systems
to stop working, it may be quite rational for many customers to delay appli-
cation. Vendors also delay fixing bugs, because it costs money to test fixes,

Open and Closed Systems Are Equivalent 133

bundle them up into a service pack, and ship them to millions of
customers. So there may be time-to-market issues for the defenders, too,
and at several levels.

Transient effects may be the dominant factor in network security at
present, as most network exploits use vulnerabilities that have already been
published and for which patches are already available. If all patches were
applied to all machines as soon as they were shipped, then the pattern
of attacks would change radically. This is now rightly an area of active
research, with engineers developing better patching mechanisms and secu-
rity economists engaging in controversy. For example, Rescorla argues that,
in order to optimize social welfare, vulnerability disclosure should be
delayed (Rescorla 2004), while Arora, Telang, and Xu (2004) argue that
either disclosure should be accelerated, or vendor liability increased.

Transaction Costs
These time-to-market issues largely depend on the effects of a more general
problem, namely transaction costs. Transaction costs may persuade some
vendors to remain closed. For example, if source code were made available
to beta testers too, then the initial reliability of beta releases would be
worse, as the testers would be more efficient. Fairly soon, the reliability
would stabilize at the status quo ante, but a much larger number of bugs
would have had to be fixed by the vendor’s staff. Avoiding this cost might
sometimes be a strong argument against open systems.

Complexity Growth
Software becomes steadily more complex, and reliability growth theory
leads us to expect that the overall dependability will be dominated by
newly added code (Brady, Anderson, and Ball 1999). Thus, while we may
never get systems that are in equilibrium in the sense of the simple model,
there may be a rough second-order equilibrium in which the amount of
new code being added in each cycle is enough to offset the reliability gains
from bug-fixing activities since the last cycle. Then the software will be less
dependable in equilibrium if new code is added at a faster rate.

So commercial featuritis can significantly undermine code quality. But
software vendors tend to make their code just as complex as they can get
away with, while collaborative developers are more likely to be “scratch-
ing an itch” than trying to please as many prospective customers as pos-
sible (Raymond 2001). Certainly products such as OpenOffice appear to
lag the commercial products they compete with by several years in terms
of feature complexity.

134 Ross Anderson

Correlated Bugs
Just as correlated private information can break the equivalence of differ-
ent types of auction, so also can correlations between security vulnerabil-
ities cause the equivalence of attack and defense to fail.

Recently, most reported vulnerabilities in operating systems and middle-
ware have related to stack overflow attacks. This may have helped the
attackers in the beginning; an attacker could write a test harness to bombard
a target system with unsuitable inputs and observe the results. More
recently, technological changes may have tilted the playing field in favor of
the defenders: the typical information security conference now has a
number of papers on canaries, static code analysis tools, and compiler
extensions to foil this type of attack, while Microsoft’s programmers have
been trained in their own way of doing things (Howard and LeBlanc 2002).

In extreme cases, such effects can lead to security systems becoming
brittle. The cryptographic processors used by banks to protect cash
machine PINs, for example, have been around for some twenty years. Their
design was relatively obscure; some products had manuals available online,
but few people outside the payment industry paid them any attention.
After the first attacks were published in late 2000, this changed. Many
further attacks were soon found and the technology has been rendered
largely ineffective (Anderson and Bond 2003; Anderson 2001a).

Code Quality
In the ideal case, system dependability is a function only of the initial code
quality K and the amount of testing t. However, it is not clear that code
quality is a constant. Many people believe that open systems tend to have
higher quality code to begin with, that is, a lower value of K.

Knowing that one’s code may be read and commented on widely can
motivate people to code carefully, while there may also be selection effects:
for example, programmers with greater skill and motivation may end up
working on open systems. A lot of labor is donated to open system pro-
jects by graduate students, who are typically drawn from the top quartile
of computer science and engineering graduates. Meanwhile, commercial
deadlines can impose pressures as deadlines approach that cause even good
coders to work less carefully. Open systems may therefore start out with a
constant-factor advantage.

Effectiveness of Testing
Just as K can vary, so can t. It is quite conceivable that the users of open
products such as GNU/Linux and Apache are more motivated to report

Open and Closed Systems Are Equivalent 135

system problems effectively, and it may be easier to do so, compared with
Windows users, who respond to a crash by rebooting and would not know
how to report a bug if they wanted to.

An issue that may push in the other direction is that security testing is
much more effective if the testers are hostile (Anderson and Beduidenhoudt
1996). Evaluators paid by the vendor are often nowhere near as good at
finding flaws as the people who attack a system once it’s released—from
competitors to research students motivated by glory. In many cases, this
effect may simply tweak the value of l. However, there have been occasional
step-changes in the number and hostility of attackers. For example, after
Sky-TV enciphered the channel broadcasting Star Trek in the early 1990s,
students in Germany could no longer get legal access to the program, so
they spent considerable energy breaking its conditional access system
(Anderson 2001a). In the case of Windows versus GNU/Linux, people may
be more hostile to Windows both for ideological reasons and because an
exploit against Windows allows an attacker to break into more systems.

What is the net effect on t (and K)? Recently, both Windows and GNU/
Linux have been suffering about fifty reported security vulnerabilities a
year (for precise figures by product and release, see Rescorla 2004). Given
that Windows has perhaps ten to twenty times as many users, one would
expect t to be larger and thus K/t to be smaller by this amount; in other
words, we would expect Windows to be ten to twenty times more reliable.
As it clearly isn’t, one can surmise that different values of K and of testing
effectiveness (in effect, a multiplier of t) help GNU/Linux to make back the
gap.

Policy Incentives on the Vendor
In addition to the code and testing quality effects, which work through
individual programmers and testers, there are also incentive issues at the
corporate level.

The motivation of the vendor to implement fixes for reported bugs can
be affected in practice by many factors. The U.S. government prefers vul-
nerabilities in some products to be reported to authority first, so that they
can be exploited by law enforcement or intelligence agencies for a while.
Vendors are only encouraged to ship patches once outsiders start exploit-
ing the hole too.

Time-to-Market Incentives on the Vendor
There are also the issues discussed previously (Anderson 2001b): the
economics of the software industry (high fixed costs, low variable costs,

136 Ross Anderson

network effects, lock-in) lead to dominant-firm markets with strong incen-
tives to ship products quickly while establishing a leading position. Firms
will therefore tend to ship a product as soon as it’s good enough; similarly,
given that fixing bugs takes time, they might fix only enough bugs for their
product to keep up with the perceived competition. For example, Microsoft
takes the perfectly pragmatic approach of prioritizing bugs by severity, and
as the ship date approaches, the bug categories are allowed to slip. So more
severe bugs are allowed through into the product if they are discovered at
the last minute and if fixing them is nontrivial (Myrhvold, N., personal
communication).

Industry Structure Issues for the Vendor
The size of the vendor and the nature of sectoral competition can be the
source of a number of interesting effects. Gal-Or and Ghose show that
larger firms are more likely to benefit from information sharing than
smaller ones, as are firms in larger industries; and that information sharing
is more valuable in more competitive industries (Gal-Or and Ghose 2003).
The critical observation is that openness saves costs—so the biggest
spenders save the most.

The extent to which industries are vertically integrated could also matter.
Many vulnerabilities affecting Windows PCs can be blamed on Microsoft
as the supplier of the most common operating system and the dominant
productivity application, as well as Web server and database products. On
the other hand, smart cards are typically designed by one firm, fabricated
by a second using components licensed from multiple specialists, then
loaded with an operating system from a third firm, a JVM from a fourth,
and a crypto library from a fifth—with power analysis countermeasures
bought in from yet another specialist. On top of this, an OEM will write
some applications, and the customer still more.

The security of the resulting product against a given attack—say, fault
induction—may depend on the interaction between hardware and soft-
ware components from many different sources. Needless to say, many of
the component vendors try to dump liability either upstream or down-
stream. In such an environment, obscure proprietary designs can under-
mine security as they facilitate such behavior. Laws such as the EU
electronic signature directive, which make the cardholder liable for secu-
rity failures, may compound the perverse incentive by leading all the other
players to favor closed design and obscure mechanisms (Bohm, Brown, and
Gladman 2000).

Open and Closed Systems Are Equivalent 137

PR Incentives on the Vendor
Firms care about their image, especially when under pressure from regula-
tors or antitrust authorities. Our team has long experience of security
hardware and software vendors preferring to keep quiet about bugs, and
shipping patches only when their hand is forced (e.g., by TV publicity).
They may feel that shipping a patch undermines previous claims of
absolute protection. Even if “unbreakable security” is not company policy,
managers might not want to undermine assurances previously given to
their bosses. So there may be information asymmetries and principal-agent
effects galore.

The argument is now swinging in favor of policies of vulnerability dis-
closure after a fixed notice period; without the threat of eventual disclo-
sure, little may get done (Rain Forest Puppy 2003; Fisher 2003). This is not
going to be a panacea, though; on at least one occasion, a grace period
that we gave a vendor before publication was consumed entirely by inter-
nal wrangling about which department was to blame for the flaw. In
another case, vendors reassured their customers that attacks colleagues and
I had published were “not important,” so the customers had done nothing
about them.

Operational Profile
Another set of issues has to do with the operational profile, which is how
the reliability community refers to test focus. The models discussed above
assume that testing is random; yet in practice, a tester is likely to focus on
a particular subset of test cases that are of interest to her or are easy to
perform with her equipment.

However, the individual preferences and skills of testers still vary. It is
well known that software may be tested extensively by one person,
until it appears to be very reliable, only to show a number of bugs
quickly when passed to a second tester (Bishop 2001). This provides
an economic argument for parallelism in testing (Brady, Anderson, and
Ball 1999). It is also a strong argument for extensive beta testing; a large
set of testers is more likely to be representative of the ultimate user
community.

Experienced testers know that most bugs are to be found in recently
added code, and will focus on this. In fact, one real advantage that source
code access gives to an attacker is that it makes it easier to identify new
code. In theory, this does not affect our argument, as the effects are
subsumed into the value of l. In practice, with systems that depart from
the ideal in other ways, it could be important.

138 Ross Anderson

Adverse Selection
Operational profile issues can combine with adverse selection in an inter-
esting way. Security failures often happen in the boring bits of a product,
such as device drivers and exception handling. The tempting explanation
is that low-status programmers in a development team—who may be the
least experienced, the least motivated, the least able (or all of the above)—
are most likely to get saddled with such work.

Coase’s Penguin and the Wild West
A related argument for closed systems is as follows. Think of the Wild West;
the bandits can concentrate their forces to attack any bank on the fron-
tier, while the sheriff’s men have to defend everywhere. Now, the level of
assurance of a given component is a function of the amount of scrutiny
that it actually gets, not of what it might get in theory. As testing is boring,
and volunteers generally only want to fix failures that irritate them, the
amount of concentrated attention paid by random community members
to (say) the smartcard device drivers for GNU/Linux is unlikely to match
what an enemy government might invest (Schaefer 2001).

A counterargument can be drawn from Benkler’s (2002) model, that
large communities can include individuals with arbitrarily low reserva-
tion prices for all sorts of work. A different one arises in the context of
reliability growth theory. Efficacy of focus appears to assume that the
attacker is more efficient than the defender at selecting a subset of the
code to study for vulnerabilities; if they were randomly distributed, then
no one area of focus should be more productive for the attacker than any
other.

The more relevant consideration for security assurance is, I believe,
the one in Benkler (2002)—that a large number of low-probability bugs
structurally favors attack over defense. In an extreme case, a system with
106 bugs each with an MTTF of 109 hours will have an MTBF of 1,000 hours,
so it will take about that much time to find an attack. But a defender
who spends even a million hours has very little chance of finding that
particular bug before the enemy exploits it. This problem was known
in generic terms in the 1970s; the model described here makes it more
precise. (It also leads to Rescorla’s (2004) disturbing argument that if
vulnerabilities truly are uncorrelated, then the net benefit of disclosing
and fixing them may be negative—patched software doesn’t get much
harder to attack, while software that’s not patched yet becomes trivial to
attack.)

Open and Closed Systems Are Equivalent 139

Do Defenders Cooperate or Free-Ride?
I mentioned that the users of open systems might be better at reporting
bugs. Such factors are not restricted to the demand side of the bug-fixing
business, but can affect the supply side too. The maintainers of open
systems might take more pride in their work, and be more disposed to
listen to complaints, while maintainers working for a company might be
less well motivated. They might see bug reports as extra work and devise
mechanisms—even subconsciously—to limit the rate of reporting. On the
other hand, a corps of paid maintainers may be much easier to coordinate
and manage, so it might get better results in the long term once the excite-
ment of working on a new software project has paled. How might we
analyze this?

I mentioned industries, such as the smartcard industry, where many
defenders have to cooperate for best results. Varian presents an interesting
analysis of how defenders are likely to react when the effectiveness of their
defense depends on the sum total of all their efforts, the efforts of the most
energetic and efficient defender, or the efforts of the least energetic and
efficient defender (Varian 2002). In the total-efforts case, there is always
too little effort exerted at the Nash equilibrium as opposed to the optimum,
but at least reliability continues to increase with the total number of
participants.

Conclusion

The debate about open versus closed systems started out in the nineteenth
century when Auguste Kerckhoffs (1883) pointed out the wisdom of assum-
ing that the enemy knew one’s cipher system, so that security could reside
only in the key. It has developed into a debate about whether access to the
source code of a software product is of more help to the defense, because
they can find and fix bugs more easily, or to attackers, because they can
develop exploits with less effort.

This chapter gives a partial answer to that question. In a perfect world,
and for systems large and complex enough for statistical methods to apply,
the attack and the defense are helped equally. Whether systems are open
or closed makes no difference in the long run.

The interesting questions lie in the circumstances in which this sym-
metry can be broken in practice. There are enough deviations from the
ideal for the choice between open and closed to be an important one, and
a suitable subject for researchers in the economics of information security.
The balance can be pushed one way or another by many things: transient

140 Ross Anderson

effects, transaction costs, featuritis, interdependent or correlated vulnera-
bilities, selection effects, incentives for coders and testers, agency issues,
policy and market pressures, changing operational profiles and the effects
of defenders who cheat rather than collaborating. (This list is almost
certainly not complete.)

Although some of these effects can be modeled theoretically, empirical
data are needed to determine which effects matter more. It might be
particularly interesting, for example, to have studies of reliability growth
for code that has bifurcated, and now has an open and a closed version.

In conclusion, I have not proved that open and closed systems are always
equivalent. They are in an ideal world, but our world is not ideal. The sig-
nificance of this result is, I hope, to have made a start towards a better
understanding of the circumstances in which open systems (or closed
systems) are best, and to help us focus on the factors that actually matter.

Appendix

The following exposition is taken from Brady, Anderson, and Ball (1999),
and uses an argument familiar to students of statistical mechanics. If there
are N(t) bugs left after t tests, let the probability that a test fails be E(t),
where a test failure counts double if it is caused by two separate bugs.
Assume that no bugs are reintroduced, so that bugs are removed as fast as
they are discovered. That is:

(3)

By analogy with theormodynamics, define a temperature T = 1/t and
entropy S = ÚdE/T. Thus S = ÚtdE = Et - ÚEdt. This can be solved by substi-
tuting equation 3, giving S = N + Et. The entropy S is a decreasing func-
tion of t (since dS/dt = tdE/dt and dE/dt < 0). So both S and N are bounded
by their initial value N0 (the number of bugs initially present) and the
quantity S - N = Et is bounded by a constant k (with k < N0), that is:

(4)

Et vanishes at t = 0 and t = W0, where W0 is the number of input states
the program can process. It has a maximum value Et = k. I now wish to
show that this maximum is attained over a wide range of values of t, and
indeed that Et � k for N0 << t << W0. This will be the region of interest in
most real-world systems.

We can write equation (4) as Et = k - g(t) where 0 £ g(t) £ k. Since g(t)
is bounded, we cannot have g(t) ~ t x for x > 0. On the other hand, if

E k t£

dN Edt= -

Open and Closed Systems Are Equivalent 141

g(t) = At-1, then this makes a contribution to N of -Úg(t)dt/t = A/t, which is
reduced to only one bug after A tests, and this can be ignored as A < k.
Indeed, we can ignore g(t) = At-x unless x is very small. Finally, if g(t) varies
slowly with t, such as g(t) = At-x for small x, then it can be treated as a con-
stant in the region of interest, namely N0 << t << W0. In this region, we
can subsume the constant and near-constant terms of g(t) into k and dis-
regard the rest, giving:

(5)

Thus the mean time to failure is 1/E � t/k in units where each test takes
one unit of time.

More precisely, we can consider the distribution of defects. Let there be
r(e)de bugs initially with failure rates in e to e + de. Their number will decay
exponentially with characteristic time 1/e, so that E = Úer(e)e-etde � k/t. The
solution to this equation in the region of interest is:

(6)

This solution is valid for N0 << 1/e << W0, and is the distribution that
will be measured by experiment. It differs from the ab initio distribution
because some defects will already have been eliminated from a well-tested
program (those in energy bands with r(e) ~ e x for x > -1) and other defects
are of such low energy that they will almost never come to light in prac-
tical situations (those in energy bands with r(e) ~ e x for x < -1).

Note

I got useful comments from Rob Brady, Hal Varian, Jacques Crémer, Peter Bishop,

Richard Clayton, Paul Leach, Peter Wayner, Fabien Petitcolas, Brian Behlendorf,

Seth Arnold, Jonathan Smith, Tim Harris, Andrei Serjantov, and Mike Roe; from

attendees at the Toulouse conference on Open Source Software Economics where I

first presented these ideas; and from attendees talks I gave on the subject at City

University, London, and Edinburgh University.

r e e() ª k

E k tª

142 Ross Anderson

9 Making Lightning Strike Twice

Charles B. Weinstock and Scott A. Hissam

The Software Engineering Institute (SEI) is a federally funded research and
development center (FFRDC) that is operated by Carnegie Mellon Univer-
sity and sponsored by the U.S. Department of Defense (DoD). One of our
many activities is to advise the DoD on software-related issues. Several
years ago, a new silver bullet arrived with the words “open-source soft-
ware” (OSS) emblazoned on its side. As OSS became more prevalent, we
were asked to determine its applicability to DoD systems—was it really a
silver bullet? To answer these questions, we undertook a study of what OSS
is, how it is developed, and how it is contributing to the way we develop
software. In particular, we wanted to learn where and how OSS fit into the
general practice of software engineering. The study attempted to identify
OSS from a practical perspective, with the goal of differentiating between
hype and reality. To this end, we conducted interviews, participated in
open-source development activities, workshops, and conferences, and
studied available literature on the subject. Through these activities, we
have been able to support and sometimes refute common perceptions
about OSS.

Perceptions of OSS

It is not surprising, given the attention that OSS has received, that there
are myths about OSS—both positive and negative. In this section, we’ll
look at some of the myths.

Myth: OSS, being under constant peer review by developers around the
world and around the clock, must therefore be of higher quality; that is,
it must be more reliable, robust, and secure than other software.

Raymond (2001) argues that OSS developers write the best code they can
possibly write because others will see the code. He also asserts Linus’s Law:

“Given enough eyeballs, all bugs are shallow (p. 41).” Because there are
thousands of developers reviewing OSS code, a flaw in the code will be
obvious to someone.

In fact there is open-source software that is good software and, by many
measures, high-quality software (Linux and Apache, to name but two).
Does all OSS shares this status?

Myth: Having the source code for OSS gives more control because of the
ability to read and modify the source code at will.

This myth is viewed as the main advantage that OSS has over closed-
source software (CSS), where one is at the mercy of the vendor. If the
vendor should go out of business (or otherwise stop supporting the soft-
ware), the user has no recourse. With OSS, there is no vendor to go out of
business. We’ll explore the relationship of OSS to CSS further in a later
section.

Myth: OSS has poor documentation and little support.
The assumption is that hackers are off coding wildly and have neither

the time nor the motivation to document what they produce. The concern
that there is little support comes from the sense that there is no one to
phone when there is a problem. O’Reilly (1999) discusses this myth briefly.
There is a trend towards gaps in support and/or documentation being filled
by support companies (e.g., Red Hat). Does this apply to all OSS?

Myth: There are armies of programmers sitting around waiting and eager
to work on an OSS project free of charge, making it possible to forego the
traditional development costs associated with traditional software-
development activities.

The old adage “You can lead a horse to water, but you can’t make him
drink” best describes the OSS community—that is, “You can put the code
out in the community, but you can’t make a hacker code.” The likelihood
that an OSS product will be successful (or that the hackers will help you)
is based on the characteristics of that product.

Myth: OSS hackers are a group of mavericks working in an unorganized,
haphazard, ad hoc fashion.

Given the global reach of the Internet and the therefore distributed
nature of hacker-based development, this might seem to be an obvious
conclusion. For some, this is the allure of the OSS development process—
that there is no “process-monger” or program manager hanging over the
progress of the development effort (hence the process is unpredictable and
progress is immeasurable). We refute this myth in the following Apache
case study.

144 Charles B. Weinstock and Scott A. Hissam

Case Studies

One of the ways in which we attempted to understand the OSS phenom-
enon was to get involved in or research several efforts/events. There were
five such studies, each giving us a different perspective of OSS, in terms of
software development, the products themselves, and users:

� AllCommerce—an e-commerce storefront solution
� Apache—an open-source Web server
� Enhydra—a Java-based application server
� NAIS—a NASA-operated Web site that switched from Oracle to MySQL
� Teardrop—a successful Internet attack affecting OSS and CSS

The purpose in selecting these specific OSS projects was to take varying
perspectives of OSS, in terms of software development, the products them-
selves, and users.

The AllCommerce case study focused on software development in the
OSS paradigm. A member of the SEI technical staff got involved in the
process of hacking the product to discover bugs and add new features to
the product. The express purpose of this case study was to obtain firsthand
experience in working on an OSS product from the inside; that is, to learn
the process by which changes are actually proposed, tracked, selected/
voted on, and accepted. We learned that while it is fairly easy to have an
impact on OSS, the OSS project needs a critical mass to stay alive. This can
happen because there are many people interested in the project (for what-
ever reason) or because of the existence of a serious sponsor. In the case
of AllCommerce, development progressed only when it had a sponsor that
provided support in terms of employee time and other resources. When
that sponsor folded, AllCommerce for all intents and purposes went
dormant, and as of this writing remains so.

The Apache case study took an academic, research perspective (actually
the result of a doctoral thesis) of the OSS-development process. This case
study looked at the individual contributions made to the Apache Web
server over the past five years and examined whether that contributor was
from core or noncore Apache developers. From this study we learned that
the core developers hold on to control of what goes into Apache and what
does not. As a result the development process for Apache ends up being
very similar to the development process of a good commercial software
vendor (Hissam et al. 2001).

From a purely product-centric perspective, the Enhydra case study
focused on the qualitative aspects of an OSS product and looked at coding

Making Lightning Strike Twice 145

problems found in the product by conducting a critical code review. We
learned that claims to the contrary notwithstanding, the Enhydra source
code is no better than commercial source code we have reviewed in the
past. The code as a whole is not outstanding, but it is not terrible, either;
it is simply average. It appears in this case that the many eyes code-review
assertion has not been completely effective, given that our review was
casual and tended to look for common coding errors and poor program-
ming practices.

The NAIS case study, which focused on the end user, looked at a real
application developer who switched from a commercially acquired soft-
ware product to an OSS product. Specifically, this case study examined how
and why that particular OSS product was selected, the degree to which the
application developer was engaged with the OSS development community,
and the level of satisfaction that the NAIS had with the selected OSS
product. They chose MySQL to replace an Oracle database that they could
no longer afford and have been quite happy with the results.

Finally, the Teardrop case study looked into one of the predominant
assertions about OSS: that OSS is more secure than software developed
under more traditional means. This case study takes apart one of the most
successful distributed denial-of-service (DDoS) attacks and looks at the role
that OSS played in the propagation of that attack on CSS and the response
by the OSS community. The code that was exploited to conduct this attack
had a problem that was easily fixed in the source code. At the same time
another problem, which had not yet been exploited was also fixed. This
was fine for the Unix systems this code ran on. It turns out, though, that
Microsoft Windows shared the same flaws and only the first of them was
fixed on the initial go around. Attackers noted the fix in the Unix code
that tipped them off to a problem that they were ultimately able to use
against Windows—until it too was fixed (Hissam, Plakosh, and Weinstock
2002).

From this study we learn that OSS is not only a viable source of com-
ponents from which to build systems, but also that the source code enables
the integrator to discover other properties of the component that are not
typically available when using CSS components. Unfortunately there is a
cost to this benefit, as cyber terrorists also gain additional information
about those components and discover vulnerabilities at a rate comparable
to those looking to squash bugs.

This is not to say that security through obscurity is the answer. There is
no doubt that sunshine kills bacteria. That is, the openness of OSS devel-
opment can lead to better designs, better implementations, and eventually

146 Charles B. Weinstock and Scott A. Hissam

better software. However, until a steady state in any software release
can be achieved, the influx of changes, rapid release of software (perhaps
before its time), and introduction of new features and invariably
flaws will continue to feed the vicious cyclic nature of attack and
countermeasure.

What It Takes for a Successful OSS Project

The success of an open-source project is determined by several things that
can be placed loosely into two groups: people and software. For instance,
the development of an OSS accounting system is less likely to be success-
ful than that of a graphics system. The potential developer pool for the
former is much smaller than that for the latter—just because of interest.
Paraphrasing Raymond (2001), “The best OSS projects are those that
scratch the itch of those who know how to code.” This says that a large
potential user community is not by itself enough to make an open-source
project successful. It also requires a large, or at least dedicated, developer
community. Such communities are difficult to come by, and the success-
ful project is likely to be one that meets some need of the developer
community.

The success stories in OSS all seem to scratch an itch. Linux, for instance,
attracts legions of developers who have a direct interest in improving
an operating system for their own use. However, it scratches another
important itch for some of these folks: it is creating a viable alternative
to Microsoft’s products. Throughout our discussions with groups and
individuals, this anti-Microsoft Corporation sentiment was a recurring
theme.

Another successful open-source project is the Apache Web server.
Although a core group is responsible for most of its development, it is the
Web master community that actually contributes to its development.

On the other hand, as we saw in the AllCommerce case study, without
serious corporate sponsorship AllCommerce was unable to sustain itself as
a viable open-source project. Without being paid, there weren’t enough
developers who cared deeply enough to sustain it.

Although people issues play a large part in the success of an open-source
project, there are software issues as well. These issues can be divided into
two groups as well: design and tools.

The poorly thought out initial design of an open-source project is a dif-
ficult impediment to overcome. For instance, huge, monolithic software
does not lend itself very well to the open-source model. Such software

Making Lightning Strike Twice 147

requires too much upfront intellectual investment to learn the software’s
architecture, which can be daunting to many potential contributors. A
well-modularized system, on the other hand, allows contributors to carve
off chunks on which they can work.

At the time we conducted our study, an example of an open-source
project that appeared to work poorly because of the structure of the soft-
ware was Mozilla (the open-source Web browser). In order to release
Mozilla, Netscape apparently ripped apart Netscape Communicator, and
the result, according to some, was a “tangled mess.” Perhaps it is not coin-
cidental that until recently, Mozilla had trouble releasing a product that
people actually used.

To its credit, Netscape realized that there was a problem with Mozilla
and, in an attempt to help the situation, created a world-class set of open-
source tools. These tools, such as Bonsai, Bugzilla, and Tinderbox, support
distributed development and management and helped developers gain
insight into Mozilla. While perhaps not true several years ago, the adop-
tion of a reasonable tool base is required for an open-source project to
have a significant chance of success (if only to aid in the distributed-
development paradigm and information dissemination). Tools such as
revision-control software and bug-reporting databases are keys to success.
Fortunately for the community, organizations like SourceForge (http://
www.sourceforge.net) are making such tool sets easily available; this goes
a long way towards solving that aspect of the problem.

A final factor in the success of an open-source project is time. Corporate
software development can be hampered by unrealistically short time hori-
zons. OSS development can be as well. However in the former case, pro-
jects are all too often cancelled before they have a chance to mature, while
in the latter case an effort can continue (perhaps with reduced numbers
of people involved). The result may be that an apparent failed open-source
project becomes a success. Because of this it is difficult to say that a
particular project has failed. Examples of OSS projects that appeared to
have failed yet now seem to be succeeding include GIMP (Photoshop-like
software) and the aforementioned Mozilla. “It hasn’t failed; it just hasn’t
succeeded—yet.”

The OSS Development Model

It might not be surprising that the development process for OSS differs
from traditional software development. What might be surprising to some
is how ultimately similar they are.

148 Charles B. Weinstock and Scott A. Hissam

Traditional software development starts with a detailed requirements
document that is used by the system architect to specify the system. Next
comes detailed system design, implementation, validation, verification,
and ultimately, maintenance/upgrade. Iteration is possible at any of these
steps. Successful OSS projects, while not conducted as traditional (e.g.,
commercial) developments, go through all of these steps as well.

But the OSS development model differs from its traditional perhaps not-
so-distant cousin. For instance, requirements analysis may be very ad hoc.
Successful projects seem to start with a vision and often an artifact (e.g.,
prototype) that embodies that vision—at least in spirit. This seems to be
the preferred way of communicating top-level requirements to the com-
munity for an OSS project. As the community grows, the list of possible
requirements will grow as well. Additional requirements or new features
for an OSS project can come from anyone with a good (or bad) idea.
Furthermore, these new requirements actually may be presented to the
community as a full-fledged implementation. That is, someone has what
he thinks is a good idea, goes off and implements it, and then presents it
to the community. Usually this is not the case in a traditional project.

In a traditional project, the system architect will weigh conflicting
requirements and decide which ones to incorporate and which to ignore
or postpone. This is not done as easily in an OSS development effort, where
the developer community can vote with its feet. However successful pro-
jects seem to rely on a core group of respected developers to make these
choices. The Apache Web server is one example of such a project. This core
group is taking on the role of a system architect. If the core group is strong
and respected by the community, the group can have the same effect (vir-
tually identical) as determining requirements for a traditional development
effort.

Implementation and testing happens in OSS development efforts much
as it does for traditional software–development efforts. The main differ-
ence is that these activities are often going on in parallel with the actual
system specification. Individual developers (core or otherwise) carve out
little niches for themselves and are free to design, implement, and test as
they see fit. Often there will be competing designs and implementations,
at most one of which will be selected for inclusion in the OSS system. It
is the core group (for systems so organized) that makes the selections and
keeps this whole process from getting out of control.

Finally, to conduct maintenance activities, upgrade, re-release, or port
to new platforms, the open-source community relies on sophisticated
tools for activities such as version control, bug tracking, documentation

Making Lightning Strike Twice 149

maintenance, and distributed development. The OSS project that does not
have or use a robust tool set (usually open source itself) either has too small
a community to bother with such baggage or is doomed to failure. This is
also the case for traditional development.

The Relationship of OSS to CSS

Judging from the press it receives, OSS is something new in the world of
software development. To the limited extent that the press itself is sensi-
tive to the term, there is truth to that statement. It would be fair to
acknowledge that more people (and not just software engineers) are now
sensitive to the term open source than ever before—for which we can also
thank the press. But what makes OSS new to the general, software systems
engineering community is that we are faced with more choices for viable
software components than ever before. But you may ask yourself, before
what?

The World Before OSS
Before OSS became a popular term, software engineers had three gener-
alized choices for software components:

� The component could be built from the ground up.
� The component could be acquired from another software project or
initiative.
� The component could be purchased from the commercial marketplace.

If the component were to be built from the ground up, there were
basically two approaches: to actually undertake the development of the
component from within the development organization (i.e., inhouse), or
to negotiate a contract to develop the component via an external software-
development organization. Essentially the component was custom-built.
As such, the software sources were available for the component acquired
in this fashion.

Another approach was to locate components of similar functionality
from other (potentially similar) software projects. The term often used
in this context was reuse or domain-specific reuse. If a component could be
located, it could then be adapted for the specific needs of the using
software-development activity. In U.S. government vernacular, this was
also referred to as government off-the-shelf (GOTS) software. Typically,
reuse libraries and GOTS software came in binary and source-code
form.

150 Charles B. Weinstock and Scott A. Hissam

Finally, software engineers had the option of looking to the commercial
marketplace for software components. Software-development organiza-
tions would undergo market surveys trying to locate the components
that best fit their needs. Evaluations would commence to determine
which of the commercial offerings most closely matched and a selection
would be made. In many instances, the source code was not delivered
as part of the component’s packaging. In some cases, the source code
may have been available for an additional cost (if at all). And in the event
that the source code could be bought, there were (and still are) very restric-
tive limitations placed on what could and could not be done to those
sources.

The World after OSS
With the advent of OSS, the community has an additional source of com-
ponents, which is actually a combination of all three of the choices listed
earlier. OSS and reusable components are very much alike in that they are
both developed by others and often come in binary and source-code form.
But like reusable components, it can be challenging to understand what
the OSS component does (Shaw 1996).

Because it comes with the source, OSS is similar to custom-built software.
However, it lacks the design, architectural, and behavioral knowledge
inherent to custom-built software. This is also a problem with commer-
cially purchased software. This lack of knowledge allows us to draw a strong
analogy between OSS and COTS software in spite of the source code being
available for the former and not for the latter.

The SEI has been studying COTS-based systems for a number of years
and has learned some important lessons about them, many of which apply
directly to OSS.1

Organizations adopting an OSS component have access to the source,
but are not required to do anything with it. If they choose not to look at
the source, they are treating it as a black box. Otherwise they are treating
it as a white box. We discuss both of these perspectives in the following
sections.

OSS as a Black Box
Treating OSS as a black box is essentially treating it as a COTS component;
the same benefits and problems will apply. For instance, an organization
adopting COTS products should know something about the vendor (e.g.,
its stability and responsiveness to problems), and an organization adopt-
ing OSS should know something about its community.

Making Lightning Strike Twice 151

If the community is large and active, the organization can expect that
the software will be updated frequently, that there will be reasonable
quality assurance, that problems are likely to be fixed, and that there will
be people to turn to for help. If the community is small and stagnant, it
is less likely that the software will evolve, that it will be well tested, or that
there will be available support.

Organizations that adopt COTS solutions are often too small to have
much influence over the direction in which the vendor evolves the product
(Hissam, Carney, and Plakosh 1998). Black-box OSS is probably worse in
this regard. A COTS component will change due to market pressure, time-
to-market considerations, the need for upgrade revenue, and so forth. OSS
components can change for similar market reasons, but can also change
for political or social reasons (factions within the community), or because
someone has a good idea—though not necessarily one that heads in a
direction suitable to the organization.

Organizations that adopt COTS products can suffer from the vendor-
driven upgrade problem: the vendor dictates the rate of change in the com-
ponent, and the organization must either upgrade or find that the version
it is using is no longer supported. This same problem exists with OSS. The
software will change, and eventually the organization will be forced to
upgrade or be unable to benefit from bug fixes and enhancements. The
rate of change for an eagerly supported OSS component can be staggering.

Organizations that adopt COTS solutions often find that they have to
either adapt to the business model assumed by the component or pay to
have the component changed to fit their business model (Oberndorf and
Foreman 1999). We have found that adapting the business model usually
works out better than changing the component, as once you change a com-
ponent you own the solution. If the vendor does not accept your changes,
you’ll be faced with making them to all future versions of the software
yourself.

For black-box OSS, it may be easier for a change to make its way back
into the standard distribution. However, the decision is still out of the
organization’s control. If the community does not accept the change, the
only recourse is to reincorporate the change into all future versions of
the component.

Because of a lack of design and architectural specifications, undocu-
mented functionality, unknown pre- or post-conditions, deviations from
supported protocols, and environmental differences, it is difficult to know
how a COTS component is constructed without access to the source code.
As a consequence, it can be difficult to integrate the component. With OSS,

152 Charles B. Weinstock and Scott A. Hissam

the source is available, but consulting it means that the component is no
longer being treated as a black box.

OSS as a White Box
Because the source is available, it is possible to treat OSS as a white box.
It therefore becomes possible to discover platform-specific differences,
uncover pre- and post-conditions, and expose hidden features and undoc-
umented functionality. With this visibility comes the ability to change the
components as necessary to integrate them into the system.

However sometimes the source is the only documentation that is
provided. Some consider this to be enough. Linus Torvalds, the creator of
Linux, has been quoted as saying, “Show me the source” (Cox 1998). Yet
if this were the case, there would be no need for Unified Modeling
Language (UML), use cases, sequence diagrams, and other sorts of design
documentation. Gaining competency in the OSS component without
these additional aids can be difficult.

An organization that treats OSS as a white box has a few key advantages
over one that treats it as a black box. One advantage is the ability to test
the system knowing exactly what goes on inside the software. Another
advantage is the ability to fix bugs without waiting for the community to
catch up. A seeming advantage is the ability to adapt the system to the
organization’s needs. But as already discussed, the rejection of your change
by the community means that you own the change and have given up
many of the benefits of OSS.

Acquisition Issues

According to the President’s Information Technology Advisory Committee
(PITAC): “Existing federal procurement rules do not explicitly authorize
competition between open-source alternatives and proprietary software.
This ambiguity often leads to a de facto prohibition of open-source alter-
natives within agencies” (PITAC 00, 6).

The PITAC recommends that the federal government allow open-source
development efforts to “compete on a level playing field with proprietary
solutions in government procurement of high-end computing software.”
We wholeheartedly endorse that recommendation.

In the presence of such a level playing field, acquiring OSS would
not be fundamentally very different from acquiring COTS software. The
benefits and risks would be similar and both must be judged on their
merits.

Making Lightning Strike Twice 153

We’ve already discussed issues such as security in the open-source
context, so we won’t consider them here. Those sorts of issues aside, there
are two risks that an organization acquiring OSS faces:

� That the software won’t exactly fit the needs of the organization
� That ultimately there will be no real support for the software

We’ll address each of these in turn.
A key benefit of OSS is that the sources are available, allowing them to

be modified as necessary to meet the needs of the acquiring organization.
While this is indeed a benefit, it also introduces several significant risks.
Once the OSS is modified, many open-source licenses require the organi-
zation to give the changes back to the community. For some systems this
might not be a problem, but for others, there might be proprietary or
sensitive information involved. Thus it is very important to understand
the open-source license being used.

As discussed in the preceding section on CSS, just because a modifica-
tion is given back to the community does not mean that the community
will embrace it. If the community doesn’t embrace it, the organization
faces a serious choice. It can either stay with the current version of the
software (incorporating the modifications) or move on to updated ver-
sions—in which case, the modifications have to be made all over again.
Staying with the current version is the easy thing to do, but in doing so,
you give up some of the advantages of OSS.

With COTS software there is always the risk of the vendor going out of
business, leaving the organization with software but no support. This can
be mitigated somewhat by contract clauses that require the escrowing
of the source code as a contingency. No such escrow is needed for OSS.
However, in both cases, unless the organization has personnel capable of
understanding and working with the software’s source code, the advantage
of having it available is not clear. Certainly there would be tremendous
overhead should there be a need to actually use the source code; by
taking it over, you are now essentially in the business of producing that
product.

Most government software is acquired through contracts with contrac-
tors. A contractor proposing an open-source solution in a government
contract needs to present risk-mitigation plans for supporting the software,
just as it would have to do if it were proposing a COTS product. In the
case of a COTS product, this might include statements regarding the sta-
bility of the vendors involved. No such statement is valid regarding OSS.
The community surrounding an open-source product is not guaranteed to

154 Charles B. Weinstock and Scott A. Hissam

be there when needed, nor is it guaranteed to care about the support needs
of the government. Furthermore, if the proposing contractor is relying on
the OSS community to either add or enhance a product feature or accept
a contactor-provided enhancement in the performance of the government-
funded software-development contract, the government should expect a
mitigation if the OSS community does not provide such an enhancement
or rejects the enhancement outright. Thus the ultimate support of the soft-
ware will fall on the proposing contractor.

Security Issues

There are, of course, unique benefits of OSS—many of which have been
discussed elsewhere in this book. From an acquisition point of view, the
initial cost of OSS is low. Also, at least for significant open-source products,
it is likely (but by no means guaranteed) that the quality of the software
will be on a par with many COTS solutions. Finally, when modifications
are needed, it is guaranteed that they can be made in OSS. For COTS
software, there is always the possibility that the vendor will refuse. (But,
as we’ve seen, the ability to modify is also a source of risk.)

Trust in the software components that are in use in our systems is vital,
regardless of whether the software comes from the bazaar or the cathedral.
As integrators, we need to know that software emanating from either realm
has been reviewed and tested and does what it claims to do. This means
that we need eyes that look beyond the source code and look to the bigger
picture. That is the holistic and system view of the software—the archi-
tecture and the design.

Others are beginning to look at the overall OSS development process
(Feller and Fitzgerald 2000; Nakakoji and Yamamoto 2001; Hissam et al.
2001). More specifically, from the Apache case study (discussed earlier), we
observed what type of contributions have been made to the Apache system
and whether those who made them were from core or noncore Apache
developers. We learned that a majority (90 percent) of changes to the
system (implementation, patches, feature enhancements, and documenta-
tion) were carried out by the core-group developers, while many of the dif-
ficult and critical architectural and design modifications came from even
fewer core developers. Noncore developers contributed to a small fraction
of the changes. What is interesting is that the Apache core developers are
a relatively small group compared to the noncore developers—in fact, the
size of the core developers is on a par with the typical size of development
teams found in CSS products.

Making Lightning Strike Twice 155

This is not intended to imply that OSS lacks architectural and design
expertise. Actually, the Apache modular architecture is likely central to its
success. However, even with the existence of a large community of devel-
opers participating actively in an OSS project, the extent that many eyes
are really critiquing the holistic view of the system’s architecture and
design, looking for vulnerabilities is questionable.

This is an issue not just for OSS: it is a problem for CSS as well. That is,
in CSS we have to trust and believe that the vendor has conducted such a
holistic review of its commercial software offerings. We have to trust the
vendor, because there is little likelihood that any third party can attest to
a vendor’s approach to ridding its software of vulnerabilities. This specific
point has been a thunderous charge of the OSS community, and we do not
contest that assertion. But we caution that just because the software is open
to review, it should not automatically follow that such a review has actu-
ally been performed (but of course you are more than welcome to conduct
that review yourself—welcome to the bazaar).

Making Lightning Strike Twice

Instances of successful OSS products such as Linux, Apache, Perl, sendmail,
and much of the software that makes up the backbone of today’s Web are
clear indications that successful OSS activities can strike often. But like with
lightning, we can ask, “Is it possible to predict where the next strike will
be?” or “Is it possible to make the next strike happen?”

Continuing with this analogy, we can answer these questions to the
extent that science will permit. Like lightning, meteorologists can predict
the likelihood of severe weather in a metro region given atmospheric
conditions. For OSS, it may be harder to predict the likelihood of success
for an OSS product or activity, but certain conditions appear to be key,
specifically:

� It is a working product. Looking back at many of the products, especially
Apache and Linux, none started in the community as a blank slate.
Apache’s genesis began with the end of the National Center for Super-
computing Applications (NCSA) Web server. Linus Torvalds released Linux
version 0.01 to the community in September 1991. Just a product concept
and design in the open-source community has a far less likely chance of
success. A prototype, early conceptual product, or even a toy is needed to
bootstrap the community’s imagination and fervor.

156 Charles B. Weinstock and Scott A. Hissam

� It has committed leaders. Likewise as important is a visionary or
champion of the product to chart the direction of the development in a
(relatively) forward-moving direction. Although innovation and product
evolution are apt to come from any one of the hackers in the development
community, at least one person is needed to be the arbiter of good taste
with respect to the product’s progress. This is seen easily in the Apache
project (the Apache Foundation).
� It provides a general community service. This is perhaps the closest con-
dition to the business model for commercial software. It is unlikely that a
commercial firm will bring a product to market if there is no one in the
marketplace who will want to purchase that product. In the open-source
community, the same is also true. Raymond (2001) points out a couple of
valuable lessons:
. “Every good work of software starts by scratching a developer’s personal
itch.” (p. 32)
. “Release early, release often. And listen to your customers.” (p. 39)
. “To solve an interesting problem, start by finding a problem that is
interesting to you.” (p. 61).

From these lessons, there is a theme that talks to the needs of the
developers themselves (personal itch) and a community need (customers
or consumers who need the product or service).

� It is technically cool. You are more likely to find an OSS device driver for
a graphics card than an accounting package. Feller and Fitzgerald (2002)
categorized many of the open-source projects in operation, noting that a
high percentage of those were Internet applications (browsers, clients,
servers), system and system-development applications (device drivers,
code generators, compilers, and operating systems/kernels), and game and
entertainment applications.
� Its developers are also its users. Perhaps the characteristic that is most
indicative of a successful OSS project is that the developers themselves are
also the users. Typically, this is a large difference between OSS and com-
mercial software. In commercial software, users tend to convey their needs
(i.e., requirements) to engineers who address those needs in the code and
then send the software back to the users to use. A cycle ensues, with users
conveying problems and the engineers fixing and returning the code.
However in OSS, it is more typical that a skilled engineer would rather
repair the problem in the software and report the problem along with the
repair back to the community. The fact that OSS products are technically

Making Lightning Strike Twice 157

cool explains why many of the most popular ones are used typically
by the developer community on a day-to-day basis. (Not many software
developers we know use accounting packages!)

This is not to say that any product or activity exhibiting these con-
ditions will, in fact, be successful. But those products that are considered
to be successful meet all of them.

This leads us to the next question: “Is it possible to make the next strike
happen?” In lightning research, scientists use a technique called rocket-and-
wire technique to coax lightning from the skies to the ground for research
purposes. In that technique and under the optimum atmospheric condi-
tions, a small rocket is launched trailing a ground wire to trigger lightning
discharges (Uman 1997). For OSS, a comparable technique might involve
creating conditions that are favorable to OSS development but may fail to
instigate a discharge from the OSS community.

At this point, we abandon our lightning analogy and observe (and dare
predict) that there will be other successful OSS products and activities in
the coming years. Furthermore, we surmise that such products will exhibit
the conditions discussed previously. Whether they happen by chance or
by design is difficult to tell.

In Closing

We view OSS as a viable source of components from which to build
systems. However, we are not saying that OSS should be chosen over other
sources simply because the software is open source. Rather like COTS
and CSS, OSS should be selected and evaluated on its merits. To that end,
the SEI supports the recommendations of the PITAC subpanel on OSS to
remove barriers and educate program managers and acquisition executives
and allow OSS to compete on a level playing field with proprietary
solutions (such as COTS or CSS) in government systems.

Adopters of OSS should not enter into the open-source realm blindly and
should know the real benefits and pitfalls that come with OSS. Open source
means that everyone can know the business logic encoded in the software
that runs those systems, meaning that anyone is free to point out and
potentially exploit the vulnerabilities with that logic—anyone could be
the altruistic OSS developer or the cyber terrorist. Furthermore, having the
source code is not necessarily the solution to all problems: without the
wherewithal to analyze or perhaps even to modify the software, it makes
no difference to have it in the first place.

158 Charles B. Weinstock and Scott A. Hissam

It should not follow that OSS is high-quality software. Just as in the com-
mercial marketplace, the bazaar contains very good software and very poor
software. In this report, we have noted at least one commercial software
vendor that has used its role in the OSS community as a marketing
leverage point touting the “highest-quality software,” when in fact it is no
better (or worse) than commercial-grade counterparts. Caveat emptor (let
the buyer beware); the product should be chosen based on the mission
needs of the system and the needs of the users who will be the ultimate
recipients.

Note

1. See the COTS-Based Systems (CBS) Initiative Web site at http://www.sei.cmu.edu/cbs.

Making Lightning Strike Twice 159

III Free/Open Source Processes and Tools

10 Two Case Studies of Open Source Software

Development: Apache and Mozilla

Audris Mockus, Roy T. Fielding, and James D. Herbsleb

The open source software (OSS) “movement” has received enormous atten-
tion in the last several years. It is often characterized as a fundamentally
new way to develop software (Di Bona et al. 1999; Raymond 2001) that
poses a serious challenge (Vixie 1999) to the commercial software busi-
nesses that dominate most software markets today. The challenge is not
the sort posed by a new competitor that operates according to the same
rules but threatens to do it faster, better, and cheaper. The OSS challenge
is often described as much more fundamental, and goes to the basic moti-
vations, economics, market structure, and philosophy of the institutions
that develop, market, and use software.

The basic tenets of OSS development are clear enough, although the
details can certainly be difficult to pin down precisely (see Perens 1999).
OSS, most people would agree, has as its underpinning certain legal
and pragmatic arrangements that ensure that the source code for an
OSS development will be generally available. Open source developments
typically have a central person or body that selects some subset of the
developed code for the “official” releases and makes it widely available for
distribution.

These basic arrangements to ensure freely available source code have led
to a development process that is, according to OSS proponents, radically
different from the usual industrial style of development. The main differ-
ences most often mentioned are the following:

� OSS systems are frequently built by large numbers (i.e., hundreds or even
thousands) of volunteers. It is worth noting, though, that currently a
number of OSS projects are supported by companies and some participants
are not volunteers.
� Work is not assigned; people undertake the work they choose to
undertake.

� There is no explicit system-level design, or even detailed design (Vixie
1999).
� There is no project plan, schedule, or list of deliverables.

Taken together, these differences suggest an extreme case of geographi-
cally distributed development, where developers work in arbitrary loca-
tions, rarely or never meet face to face, and coordinate their activity almost
exclusively by means of e-mail and bulletin boards. What is perhaps
most surprising about the process is that it lacks many of the traditional
mechanisms used to coordinate software development, such as plans,
system-level design, schedules, and defined processes. These “coordination
mechanisms” are generally considered to be even more important for
geographically distributed development than for colocated development
(Herbsleb and Grinter 1999), yet OSS represents an extreme case of dis-
tributed development that appears to eschew them all.

Despite the very substantial weakening of traditional ways of coordi-
nating work, the results from OSS development are often claimed to be
equivalent or even superior to software developed more traditionally. It is
claimed, for example, that defects are found and fixed very quickly because
there are “many eyeballs” looking for the problems—Raymond (2001) calls
this “Linus’s Law.” Code is written with more care and creativity, because
developers are working only on things for which they have a real passion
(Raymond 2001).

It can no longer be doubted that OSS development has produced soft-
ware of high quality and functionality. The Linux operating system has
recently enjoyed major commercial success, and is regarded by many as a
serious competitor to commercial operating systems such as Windows
(Krochmal 1999). Much of the software for the infrastructure of the Inter-
net, including the well-known BIND, Apache, and sendmail programs,
were also developed in this fashion.

The Apache server (one of the OSS software projects under considera-
tion in this case study) is, according to the Netcraft survey, the most
widely deployed Web server at the time of this writing. It accounts for
nearly 70% of the 54 million Web sites queried in the Netcraft data col-
lection. In fact, the Apache server has led in “market share” each year since
it first appeared in the survey in 1996. By any standard, Apache is very
successful.

Although this existence proof means that OSS processes can, beyond a
doubt, produce high-quality and widely deployed software, the exact
means by which this has happened, and the prospects for repeating OSS

164 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

successes, are frequently debated (see, for example, Bollinger et al. 1999
and McConnell 1999). Proponents claim that OSS software stacks up well
against commercially developed software both in quality and in the level
of support that users receive, although we are not aware of any convinc-
ing empirical studies that bear on such claims. If OSS really does pose a
major challenge to the economics and the methods of commercial devel-
opment, it is vital to understand it and to evaluate it.

Introduction

This chapter presents two case studies of the development and mainte-
nance of major OSS projects: the Apache server and Mozilla. We address
key questions about their development processes, and about the software
that is the result of those processes. We first studied the Apache project,
and based on our results, framed a number of hypotheses that we conjec-
tured would be true generally of open source developments. In our second
study, which we began after the analyses and hypothesis formation were
completed, we examined comparable data from the Mozilla project. The
data provide support for several of our original hypotheses.

Our research questions focus on two key sets of properties of OSS devel-
opment. It is remarkable that large numbers of people manage to work
together successfully to create high-quality, widely used products. Our first
set of questions (Q1 to Q4) is aimed at understanding basic parameters of
the process by which Apache and Mozilla came to exist.

Q1: What were the processes used to develop Apache and Mozilla?
In answer to this question, we construct brief qualitative descriptions of
the Apache and Mozilla development processes.

Q2: How many people wrote code for new functionality? How many people
reported problems? How many people repaired defects?
We want to see how large the development communities were, and
identify how many people actually occupied each of these traditional
development and support roles.

Q3: Were these functions carried out by distinct groups of people? That is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most
of the work?
Within each development community, what division of labor resulted
from the OSS “people choose the work they do” policy? We want to con-
struct a profile of participation in the ongoing work.

Two Case Studies of Open Source Software Development 165

166 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Q4: Where did the code contributors work in the code? Was strict code own-
ership enforced on a file or module level?
One worry regarding the “chaotic” OSS style of development is that people
will make uncoordinated changes, particularly to the same file or module,
that interfere with one another. How does the development community
avoid this?

Our second set of questions (Q5 to Q6) concerns the outcomes of these
processes. We examine the software from a customer’s point of view, with
respect to the defect density of the released code, and the time to repair
defects, especially those likely to significantly affect many customers.

Q5: What is the defect density of Apache and Mozilla code?
We compute defects per thousand lines of code, and defects per delta
in order to compare different operationalizations of the defect density
measure.

Q6: How long did it take to resolve problems? Were high-priority problems
resolved faster than low-priority problems? Has resolution interval decreased
over time?
We measured this interval because it is very important from a customer
perspective to have problems resolved quickly.

In the following section, we describe our research methodology for both
the Apache and Mozilla projects. This is followed in the third section by
the results from the study of the Apache project, and hypotheses derived
from those results. The fourth section presents our results from the study
of the Mozilla project, and a discussion of those results in light of our
previous hypotheses.

Methodology and Data Sources

In order to produce an accurate description of the open source develop-
ment processes, we wrote a draft of description of each process, then
had it reviewed by members of the core OSS development teams. For the
Apache project, one of the authors (RTF), who has been a member of the
core development team from the beginning of the Apache project, wrote
the draft description. We then circulated it among all other core members
and incorporated the comments of one member who provided feedback.
For Mozilla, we wrote a draft based on many published accounts of the
Mozilla process.1 We sent this draft to the Chief Lizard Wrangler, who
checked the draft for accuracy and provided comments. The descriptions
in the next section are the final product of this process. The commercial

development process is well known to two of the authors (AM and JDH)
from years of experience in the organization, in addition to scores of inter-
views with developers. We present a brief description of the commercial
process at the end of this section.

In order to address our quantitative research questions, we obtained key
measures of project evolution from several sources of archival data that
had been preserved throughout the history of the Apache project. The
development and testing teams in OSS projects consist of individuals who
rarely, if ever, meet face to face, or even via transitory media such as the
telephone. One consequence is that virtually all information on the OSS
project is recorded in electronic form. Many other OSS projects archive
similar data, so the techniques used here can be replicated on any such
project. (To facilitate future studies, the scripts used to extract the data are
available for download at http://mockus.org/oss.)

Apache Data Sources

Developer E-mail List (EMAIL) Anyone with an interest in working on
Apache development could join the developer mailing list, which was
archived monthly. It contains many different sorts of messages, including
technical discussions, proposed changes, and automatic notification mes-
sages about changes in the code and problem reports. There were nearly
50,000 messages posted to the list during the period starting in February
1995. Our analysis is based on all e-mail archives retrieved on May 20,
1999.

We wrote Perl scripts to extract the date, the sender identity, the message
subject, and the message body, which was further processed to obtain
details on code changes and problem reports (see later discussion). Manual
inspection resolved such things as multiple e-mail addresses in cases where
all automated techniques failed.

Concurrent Version Control Archive (CVS) The CVS commit transaction
represents a basic change similar to the Modification Request (MR) in a
commercial development environment. Every MR automatically generates
an e-mail message stored in the apache-cvs archive that we used to recon-
struct the CVS data. (The first recorded change was made on February 22,
1996. The version 1.0 of Apache released in January 1996 had a separate
CVS database.) The message body in the CVS mail archive corresponds to
one MR and contains the following information: date and time of the
change, developer login, files touched, numbers of lines added and deleted

Two Case Studies of Open Source Software Development 167

for each file, and a short abstract describing the change. We further
processed the abstract to identify people who submitted and/or reviewed
the change.

Some changes were made in response to problems that were reported. For
each MR that was generated as a result of a problem report (PR), we obtained
the PR number. We refer to changes made as a result of a PR as “fixes,” and
changes made without a problem report as “code submissions.” According
to a core participant of Apache, the information on contributors and PRs
was entered at least 90 percent of the time. All changes to the code and
documentation were used in the subsequent analysis.

Problem Reporting Database (BUGDB) As in CVS, each BUGDB transac-
tion generates a message to BUGDB stored in a separate BUGDB archive.
We used this archive to reconstruct BUGDB. For each message, we extracted
the PR number, affected module, status (open, suspended, analyzed, feed-
back, closed), name of the submitter, date, and comment.

We used the data elements extracted from these archival sources to
construct a number of measures on each change to the code, and on each
problem report. We used the process description as a basis to interpret
those measures. Where possible, we then further validated the measures
by comparing several operational definitions and by checking our
interpretations with project participants. Each measure is defined in the
following sections within the text of the analysis where it is used.

Mozilla Data Sources
The quantitative data were obtained from CVS archives for Mozilla and
from the Bugzilla problem tracking system.

Deltas were extracted from the CVS archive running the CVS log on
every file in the repository. MRs were constructed by gathering all deltas
that share login and comment and are recorded within a single three-
minute interval. The comment acknowledges people who submitted the
code and contains relevant PR numbers (if any). As before, we refer to MRs
containing PRs as “fixes,” and the remaining MRs as “code submissions.”

The product is broken down into directories /layout, /mailnews, and so
on. Files required to build a browser and mail reader are distributed among
them. We have selected several directories that correspond to modules
in Mozilla (so that each one has an owner) and that are similar in size to
the Apache project (that is, that generate between 3 thousand and 12
thousand delta per year). Abbreviated descriptions of directories taken from
Mozilla documentation (Howard 2000) follow:

168 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

� /js contains code for tokenizing, parsing, interpreting, and executing
JavaScript scripts.
� /layout contains code for the layout engine that decides how to divide
up the “window real estate” among all the pieces of content.
� /editor contains code used for the HTML editor (i.e., Composer in Mozilla
Classic), for plain-text and HTML mail composition and for text fields and
text areas throughout the product.
� /intl contains code for supporting localization.
� /rdf contains code for accessing various data and organizing their rela-
tionships according to Resource Description Framework (RDF), which is an
open standard.
� /netwerk contains code for low-level access to the network (using sockets
and file and memory caches) as well as higher-level access (using various
protocols such as http, ftp, gopher, and castanet).
� /xpinstall contains the code for implementing the SmartUpdate feature
from Mozilla Classic.

We refer to developers with e-mail domains netscape.com and mozilla.org
as internal developers, and all others we call external developers. It is worth
noting that some of the 12 people with the mozilla.org e-mail address are
not affiliated with Netscape. We attempted to match email to full names
to eliminate cases where people changed e-mail addresses over the con-
sidered period or used several different e-mail addresses, or when there was
a spelling mistake.

To retrieve problem report data, we used scripts that would first retrieve
all problem report numbers from Bugzilla, and then retrieve the details and
the status changes of each problem report. In the analysis, we consider
only three status changes for a problem report. A report is first CREATED,
then it is RESOLVED, either by a fix or other action. (There are multiple
reasons possibly; however, we discriminated only between FIXED and the
rest in the following analysis.) After inspection, the report reaches the state
of VERIFIED if it passes, or is reopened again if it does not pass. Only
reports including code changes are inspected. Each report has a priority
associated with it, with values P1 through P5. PRs also include the field
“Product,” with “Browser” being the most frequent value, occurring in 80
percent of PRs.

Data for Commercial Projects
The change history of the files in the five commercial projects was
maintained using the Extended Change Management System (ECMS)
(Midha 1997) for initiating and tracking changes, and the Source Code

Two Case Studies of Open Source Software Development 169

Control System (SCCS) (Rochkind 1975) for managing different versions
of the files.

We present a simplified description of the data collected by ECMS
and SCCS that are relevant to our study. SCCS, like most version control
systems, operates over a set of source code files. An atomic change, or delta,
to the program text consists of the lines that were deleted and those that
were added in order to make the change. Deltas are usually computed by
a file-differencing algorithm (such as UNIX diff), invoked by SCCS, which
compares an older version of a file with the current version.

SCCS records the following attributes for each change: the file with
which it is associated, the date and time the change was “checked in,” and
the name and login of the developer who made it. Additionally, the SCCS
database records each delta as a tuple including the actual source code that
was changed (lines deleted and lines added), the login of the developer,
the MR number (discussed later), and the date and time of the change.

In order to make a change to a software system, a developer might
have to modify many files. ECMS groups atomic changes to the source code
recorded by SCCS (over potentially many files) into logical changes referred
to as Modification Requests (MRs). There is typically one developer per MR.
An MR may have an English-language abstract associated with it, provided
by the developer, describing the purpose of the change. The open time of
the MR is recorded in ECMS. We use the time of the last delta of an MR
as the MR close time. Some projects contain information about the project
phase in which the MR is opened. We use it to identify MRs that fix post-
feature test and postrelease defects.

Commercial Development Process
Here we describe the commercial development process used in the five
comparison projects. We chose these projects because they had the time
span and size of the same order of magnitude as Apache, and we have
studied them previously, so we were intimately familiar with the processes
involved and had access to their change data. In all projects, the changes
to the source code follow a well-defined process. New software features that
enhance the functionality of the product are the fundamental design unit
by which the systems are extended. Changes that implement a feature or
solve a problem are sent to the development organization and go through
a rigorous design process. At the end of the design process, the work is
assigned to developers in the form of Modification Requests, which list the
work to be done to each module. To perform the changes, a developer
makes the required modifications to the code, checks whether the changes

170 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Two Case Studies of Open Source Software Development 171

are satisfactory (within a limited context; that is, without a full system
build), and then submits the MR. Code inspections, feature tests, integra-
tion, system tests, and release to customer follow. Each of these stages may
generate fix MRs, which are assigned to a developer by a supervisor who
assigns work according to developer availability and the type of expertise
required. In all of the considered projects, the developers had ownership
of the code modules.

The five considered projects were related to various aspects of telecom-
munications. Project A involved software for a network element in an
optical backbone network such as SONET or SDH. Project B involved call
handling software for a wireless network. The product was written in C
and C++ languages. The changes used in the analysis pertain to two years
of mostly porting work to make legacy software run on a new real-time
operating system. Projects C, D, and E represent operations administration
and maintenance support software for telecommunications products.
These projects were smaller in scale than projects A and B.

Study 1: The Apache Project

The Apache Development Process

Q1: What was the process used to develop Apache?
Apache began in February 1995 as a combined effort to coordinate
existing fixes to the NCSA httpd program developed by Rob McCool.
After several months of adding features and small fixes, Apache developers
replaced the old server code base in July 1995 with a new architecture
designed by Robert Thau. Then all existing features, and many new ones,
were ported to the new architecture and it was made available for beta test
sites, eventually leading to the formal release of Apache httpd 1.0 in
January 1996.

The Apache software development process is a result of both the nature
of the project and the backgrounds of the project leaders, as described by
Fielding (1999). Apache began with a conscious attempt to solve the
process issues first, before development even started, because it was clear
from the very beginning that a geographically distributed set of volunteers,
without any traditional organizational ties, would require a unique devel-
opment process in order to make decisions.

Roles and Responsibilities The Apache Group (AG), the informal organi-
zation of people responsible for guiding the development of the Apache

HTTP Server Project, consisted entirely of volunteers, each having at least
one other “real” job that competed for their time. For this reason, none
of the developers could devote large blocks of time to the project in a
consistent or planned manner, therefore requiring a development and
decision-making process that emphasized decentralized workspaces and
asynchronous communication. AG used e-mail lists exclusively to com-
municate with each other, and a minimal quorum voting system for resolv-
ing conflicts.

The selection and roles of core developers are described in Fielding 1999.
AG members are people who have contributed for an extended period of
time, usually more than six months, and are nominated for membership
and then voted on by the existing members. AG started with 8 members
(the founders), had 12 through most of the period covered, and now has
25. What we refer to as the set of “core developers” is not identical to the
set of AG members; core developers at any point in time include the subset
of AG that is active in development (usually 4 to 6 in any given week) and
the developers who are on the cusp of being nominated to AG member-
ship (usually 2 to 3).

Each AG member can vote on the inclusion of any code change, and has
commit access to CVS (if he or she desires it). Each AG member is expected
to use his or her judgment about committing code to the base, but there
is no rule prohibiting any AG member from committing code to any part
of the server. Votes are generally reserved for major changes that would
affect other developers who are adding or changing functionality.

Although there is no single development process, each Apache core
developer iterates through a common series of actions while working on
the software source. These actions include discovering that a problem exists
or new functionality is needed, determining whether a volunteer will work
on the issue, identifying a solution, developing and testing the code within
their local copy of the source, presenting the code changes to the AG for
review, and committing the code and documentation to the repository.
Depending on the scope of the change, this process might involve many
iterations before reaching a conclusion, although it is generally preferred
that the entire set of changes needed to solve a particular problem or add
a particular enhancement be applied in a single commit.

Identifying Work to Be Done There are many avenues through which the
Apache community can report problems and propose enhancements.
Change requests are reported on the developer mailing list, the problem
reporting system (BUGDB), and the Usenet newsgroups associated with the

172 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Apache products. The developer discussion list is where new features and
patches for bugs are discussed and BUGDB is where bugs are reported
(usually with no patch). Change requests on the mailing list are given the
highest priority. Since the reporter is likely to be a member of the devel-
opment community, the report is more likely to contain sufficient infor-
mation to analyze the request or contain a patch to solve the problem.
These messages receive the attention of all active developers. Common
mechanical problems, such as compilation or build problems, are typically
found first by one of the core developers and either fixed immediately or
reported and handled on the mailing list. In order to keep track of the
project status, an agenda file (STATUS) is stored in each product’s reposi-
tory, containing a list of high-priority problems, open issues among the
developers, and release plans.

The second area for reporting problems or requesting enhancements is
in the project’s BUGDB, which allows anyone with Web or e-mail access
to enter and categorize requests by severity and topic area. Once entered,
the request is posted to a separate mailing list and can be appended to via
e-mail replies or edited directly by the core developers. Unfortunately,
due to some annoying characteristics of the BUGDB technology, very few
developers keep an active eye on the BUGDB. The project relies on one or
two interested developers to perform periodic triage of the new requests:
removing mistaken or misdirected problem reports, answering requests
that can be answered quickly, and forwarding items to the developer
mailing list if they are considered critical. When a problem from any source
is repaired, the BUGDB is searched for reports associated with that problem
so that they can be included in the change report and closed.

Another avenue for reporting problems and requesting enhancements
is the discussion on Apache-related Usenet newsgroups. However, the
perceived noise level on those groups is so high that only a few Apache
developers ever have time to read the news. In general, the Apache Group
relies on interested volunteers and the community at large to recognize
promising enhancements and real problems, and to take the time to report
them to the BUGDB or forward them directly to the developer mailing list.
In general, only problems reported on released versions of the server are
recorded in BUGDB.

In order for a proposed change actually to be made, an AG member must
ultimately be persuaded it is needed or desirable. “Showstoppers”—that is,
problems that are sufficiently serious (in the view of a majority of AG
members) that a release cannot go forward until they are solved—are
always addressed. Other proposed changes are discussed on the developer

Two Case Studies of Open Source Software Development 173

174 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

mailing list, and if an AG member is convinced that it is important, an
effort is made to get the work done.

Assigning and Performing Development Work Once a problem or
enhancement has found favor with the AG, the next step is to find a vol-
unteer who will work on that problem. Core developers tend to work on
problems that are identified with areas of the code with which they are
most familiar. Some work on the product’s core services, and others work
on particular features that they developed. The Apache software archi-
tecture is designed to separate the core functionality of the server, which
every site needs, from the features, which are located in modules that can
be selectively compiled and configured. The core developers obtain an
implicit “code ownership” of parts of the server that they are known to
have created or to have maintained consistently. Although code owner-
ship doesn’t give them any special rights over change control, the other
core developers have greater respect for the opinions of those with expe-
rience in the area being changed. As a result, new core developers tend to
focus on areas where the former maintainer is no longer interested in
working, or in the development of new architectures and features that have
no preexisting claims.

After deciding to work on a problem, the next step is attempting to
identify a solution. In many cases, the primary difficulty at this stage is
not finding a solution, but in deciding which of various possibilities is the
most appropriate solution. Even when the user provides a solution that
works, it might have characteristics that are undesirable as a general
solution or might not be portable to other platforms. When several alter-
native solutions exist, the core developer usually forwards the alternatives
to the mailing list in order to get feedback from the rest of the group before
developing a solution.

Prerelease Testing Once a solution has been identified, the developer
makes changes to a local copy of the source code and tests the changes on
his or her own server. This level of testing is more or less comparable to
unit test, and perhaps feature test in a commercial development, although
the thoroughness of the test depends on the judgment and expertise of
the developer. There is no additional testing (e.g., regression, system test)
required prior to release, although review is required before or after com-
mitting the change (see next section).

Inspections After unit testing, the core developer either commits the
changes directly (if the Apache guidelines under revision with Apache

Two Case Studies of Open Source Software Development 175

Group 2004 call for a commit-then-review process) or produces a “patch”
and posts it to the developer mailing list for review. In general, changes to
a stable release require review before being committed, whereas changes
to development releases are reviewed after the change is committed. If
approved, the patch can be committed to the source by any of the devel-
opers, although in most cases it is preferred that the originator of the
change also perform the commit.

As described previously, each CVS commit results in a summary of the
changes being automatically posted to the apache-cvs mailing list, includ-
ing the commit log and a patch demonstrating the changes. All of the core
developers are responsible for reviewing the apache-cvs mailing list to
ensure that the changes are appropriate. Most core developers do in fact
review all changes. In addition, since anyone can subscribe to the mailing
list, the changes are reviewed by many people outside the core devel-
opment community, which often results in useful feedback before the
software is formally released as a package.

Managing Releases When the project nears a product release, one of the
core developers volunteers to be the release manager, responsible for iden-
tifying the critical problems (if any) that prevent the release, determining
when those problems have been repaired and the software has reached a
stable point, and controlling access to the repository so that developers
don’t inadvertently change things that should not be changed just prior
to the release. The release manager creates a forcing effect in which many
of the outstanding problem reports are identified and closed, changes sug-
gested from outside the core developers are applied, and most loose ends
are tied up. In essence, this amounts to “shaking the tree before raking up
the leaves.” The role of release manager is rotated among the core devel-
opers with the most experience with the project.

In summary, this description helps to address some of the questions
about how Apache development was organized and provides essential
background for understanding our quantitative results. In the next section,
we take a closer look at the distribution of development, defect repair, and
testing work in the Apache project, as well as the code and process from
the point of view of customer concerns.

Quantitative Results
In this section, we present results from several quantitative analyses of
the archival data from the Apache project. The measures we derive from
these data are well suited to address our research questions (Basili and
Weiss 1984). However, they might be unfamiliar to many readers since the

176 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

software metrics are not in wide use—see, for example, Carleton et al. 1992
and Fenton 1994. For this reason and to give the reader some sense of
what kinds of results might be expected, we provide data from several com-
mercial projects. Although we picked several commercial projects that are
reasonably close to Apache, none is a perfect match, and the reader should
not infer that the variation between these commercial projects and Apache
is due entirely to differences between commercial and OSS development
processes.

It is important to note that the server is designed so that new function-
ality need not be distributed along with the core server. There are well over
100 feature-filled modules that are distributed by third parties and thus not
included in our study. Many of these modules include more lines of code
than the core server.

The Size of the Apache Development Community

Q2: How many people wrote code for new Apache functionality? How many
people reported problems? How many people repaired defects?
The participation in Apache development overall was quite wide, with
almost 400 individuals contributing code that was incorporated into a
comparatively small product. In order to see how many people contributed
new functionality and how many were involved in repairing defects, we
distinguished between changes that were made as a result of a problem
report (fixes) and those that were not (code submissions). We found that
182 people contributed to 695 fixes, and 249 people contributed to 6,092
code submissions.

We examined the BUGDB to determine the number of people who
submitted problem reports. The problem reports come from a much wider
group of participants. In fact, around 3,060 different people submitted
3,975 problem reports, whereas 458 individuals submitted 591 reports that
subsequently caused a change to the Apache code or documentation. The
remaining reports did not lead to a change because they did not contain
sufficient detail to reproduce the defect, the defect was already fixed or
raised, the issue was related to incorrect configuration of the product, or
the defect was deemed to be not sufficiently important to be fixed. Many
of the reports were in regard to operating system faults that were fixed
by the system vendor, and a few others were simply invalid reports due
to spam directed at the bug reporting system’s e-mail interface. There
were 2,654 individuals who submitted 3,384 reports that we could not
trace to a code change.

Two Case Studies of Open Source Software Development 177

How Was Work Distributed within the Development Community?

Q3: Were these functions carried out by distinct groups of people? That is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most
of the work?
First, we examine participation in generating code. Figure 10.1 plots the
cumulative proportion of code changes (vertical axis) versus the top N con-
tributors to the code base (horizontal axis).

The contributors are ordered by the number of MRs from largest to
smallest. The solid line in figure 10.1 shows the cumulative proportion of
changes against the number of contributors. The dotted and dashed lines
show the cumulative proportion of added and deleted lines and the pro-
portion of delta (an MR generates one delta for each of the files it changes).
These measures capture various aspects of code contribution.

Figure 10.1 shows that the top 15 developers contributed more than 83
percent of the MRs and deltas, 88 percent of added lines, and 91 percent
of deleted lines. Very little code and, presumably, correspondingly small
effort is spent by noncore developers (for simplicity, in this section we

Number of individuals

1 5 10 15 50 100 388

0.0

0.2

0.4

0.6

0.8

1.0

Fraction of MRs
Fraction of Delta
Fraction of Lines Added
Fraction of Lines Deleted

Figure 10.1
Cumulative distribution of contributions to the code base

178 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

refer to all the developers outside the top 15 group as noncore). The MRs
done by core developers are substantially larger, as measured by lines of
code added, than those done by the noncore group. This difference is
statistically significant. The distribution of the MR fraction is signifi-
cantly (p-value < 0.01) smaller (high values of the distribution function
are achieved for smaller values of the argument) than the distribution of
added lines using the Kolmogorov-Smirnov test. The Kolmogorov-Smirnov
test is a nonparametric test that uses empirical distribution functions (such
as shown in figure 10.1). We used a one-sided test with a null hypothesis
that the distribution of the fraction of MRs is not less than the distribu-
tion of the fraction of added lines. Each of the two samples under com-
parison contained 388 observations representing the fraction of MRs and
the fraction of lines added by each developer.

Next, we looked separately at fixes only. There was a large (p-value <
0.01) difference between distributions of fixes and code submissions. (We
used a two-sample test with samples of the fraction of MRs for fixes and
code submissions. There were 182 observations in the fix sample and 249
observations in the code submission sample.) Fixes are shown in figure
10.2. The scales and developer order are the same as in figure 10.1.

Number of individuals

1 5 10 15 50 100 388

0.0

0.2

0.4

0.6

0.8

1.0

Fraction of MRs
Fraction of Delta
Fraction of Lines Added
Fraction of Lines Deleted

Figure 10.2
Cumulative distribution of fixes

Two Case Studies of Open Source Software Development 179

Figure 10.2 shows that participation of the wider development commu-
nity is more significant in defect repair than in the development of new
functionality. The core of 15 developers produced only 66 percent of the
fixes. The participation rate was 26 developers per 100 fixes and 4 devel-
opers per 100 code submissions, that is, more than six times lower for
fixes. These results indicate that despite broad overall participation in the
project, almost all new functionality is implemented and maintained by
the core group.

We inspected the regularity of developer participation by considering
two time intervals: before and after January 1, 1998. Forty-nine distinct
developers contributed more than one fix in the first period, and the same
number again in the second period. Only 20 of them contributed at least
two changes in both the first and second periods. One hundred and forty
developers contributed at least one code submission in the first period, and
120 in the second period. Of those, only 25 contributed during both
periods. This indicates that only a few developers beyond the core group
submit changes with any regularity.

Although developer contributions vary significantly in a commercial
project, our experience has been that the variations are not as large as in
the Apache project. Since the cumulative fraction of contribution is not
commonly available in the programmer productivity literature, we present
examples of several commercial projects that had a number of deltas within
an order of magnitude of the number Apache had, and were developed
over a similar period. Table 10.1 presents basic data about this comparison
group. All projects come from the telecommunications domain (see earlier
sections). The first two projects were written mostly in the C language, and
the last three mostly in C++.

Table 10.1
Statistics on Apache and five commercial projects

MRs (K) Delta (K) Lines added (K) Years Developers

Apache 6 18 220 3 388

A 3.3 129 5,000 3 101

B 2.5 18 1,000 1.5 91

C 1.1 2.8 81 1.3 17

D 0.2 0.7 21 1.7 8

E 0.7 2.4 90 1.5 16

180 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Number of developers

1 5 10 50 100

0.0

0.2

0.4

0.6

0.8

1.0

Delta for A
Lines for A
Delta for B
Lines for B

Figure 10.3
Cumulative distribution of the contributions in two commercial projects

Figure 10.3 shows the cumulative fraction of changes for commercial
projects A and B. (To avoid clutter, and because they do not give additional
insights, we do not show the curves for projects C, D, or E.)

The top 15 developers in project B contributed 77 percent of the delta
(compared to 83 percent for Apache) and 68 percent of the code (com-
pared to 88 percent). Even more extreme differences emerge in porting of
a legacy product done by project A. Here, only 46 and 33 percent of the
delta and added lines are contributed by the top 15 developers.

We defined “top” developers in the commercial projects as groups of
the most productive developers that contributed 83 percent of MRs and 88
percent of lines added. We chose these proportions because they were the
proportions we observed empirically for the summed contributions of the
15 core Apache developers.

If we look at the amount of code produced by the top Apache develop-
ers versus the top developers in the commercial projects, the Apache core
developers appear to be very productive, given that Apache is a voluntary,
part-time activity and the relatively “lean” code of Apache (see table 10.2).
Measured in thousands of lines of code (KLOC) per year, they achieve a
level of production that is within a factor of 1.5 of the top full-time devel-

Two Case Studies of Open Source Software Development 181

opers in projects C and D. Moreover, the Apache core developers handle
more MRs per year than the core developers on any of the commercial
projects. (For reasons we do not fully understand, MRs in Apache are
much smaller, in lines of code added, than in the commercial projects we
examined.)

Given the many differences among these projects, we do not want to
make strong claims about how productive the Apache core has been.
Nevertheless, one is tempted to say that the data suggest rates of produc-
tion that are at least in the same ballpark as commercial developments,
especially considering the part-time nature of the undertaking.

Who Reports Problems? Problem reporting is an essential part of any soft-
ware project. In commercial projects, the problems are mainly reported by
build, test, and customer support teams. Who is performing these tasks in
an OSS project?

The BUGDB had 3,975 distinct problem reports. The top 15 problem
reporters submitted only 213 or 5 percent of PRs. Almost 2,600 devel-
opers submitted one report, 306 submitted 2, 85 submitted 3, and the
maximum number of PRs submitted by one person was 32.

Of the top 15 problem reporters only 3 are also core developers. It shows
that the significant role of system tester is reserved almost exclusively for
the wide community of Apache users.

Code Ownership

Q4: Where did the code contributors work in the code? Was strict code own-
ership enforced on a file or module level?
Given the informal distributed way in which Apache has been built,
we wanted to investigate whether some form of “code ownership” has
evolved. We thought it likely, for example, that for most of the Apache
modules, a single person would write the vast majority of the code, with
perhaps a few minor contributions from others. The large proportion of

Table 10.2
Comparison of code productivity of top Apache developers and top developers in

several commercial projects

Apache A B C D E

KMR/developer/year .11 .03 .03 .09 .02 .06

KLOC/developer/year 4.3 38.6 11.7 6.1 5.4 10

182 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

code written by the core group contributed to our expectation that these
15 developers most likely arranged something approximating a partition
of the code, in order to keep from making conflicting changes.

An examination of persons making changes to the code failed to support
this expectation. Out of 42 .c files with more than 30 changes, 40 had at
least 2 (and 20 had at least 4) developers making more than 10 percent of
the changes. This pattern strongly suggests some other mechanism for
coordinating contributions. It seems that rather than any single individ-
ual writing all the code for a given module, those in the core group have
a sufficient level of mutual trust that they contribute code to various
modules as needed.

This finding verifies the previous qualitative description of code “own-
ership” to be more a matter of recognition of expertise than one of strictly
enforced ability to make commits to partitions of the code base.

Defects

Q5: What is the defect density of Apache code?
First we discuss issues related to measuring defect density in an OSS project
and then present the results, including comparison with four commercial
projects.

How to Measure Defect Density One frequently used measure is postre-
lease defects per thousand lines of delivered code. This measure has several
major problems, though. First, “bloaty” code is generally regarded as bad
code, but it will have an artificially low defect rate. Second, many incre-
mental deliveries contain most of the code from previous releases, with
only a small fraction of the code being changed. If all the code is counted,
this will artificially lower the defect rate. Third, it fails to take into account
how thoroughly the code is exercised. If there are only a few instances
of the application actually installed, or if it is exercised very infrequently,
this will dramatically reduce the defect rate, which again produces an
anomalous result.

We know of no general solution to this problem, but we strive to present
a well-rounded picture by calculating two different measures and compar-
ing Apache to several commercial projects on each of them. To take into
account the incremental nature of deliveries, we emulate the traditional
measure with defects per thousand lines of code added (KLOCA) (instead
of delivered code). To deal with the “bloaty” code issue, we also compute
defects per thousand deltas.

To a large degree, the second measure ameliorates the “bloaty” code
problem, because even if changes are unnecessarily verbose, this is less
likely to affect the number of deltas (independent of size of delta). We do
not have usage intensity data, but it is reasonable to assume that usage
intensity was much lower for all the commercial applications. Hence we
expect that our presented defect density numbers for Apache are some-
what higher than they would have been if the usage intensity of Apache
were more similar to that of commercial projects. Defects, in all cases, are
reported problems that resulted in actual changes to the code.

If we take a customer’s point of view, we should be concerned primarily
with defects visible to customers; that is, postrelease defects, and not build
and testing problems. The Apache PRs are very similar in this respect to
counts of postrelease defects, in that they were raised only against official
stable releases of Apache, not against interim development “releases.”

However, if we are looking at defects as a measure of how well the devel-
opment process functions, a slightly different comparison is in order. There
is no provision for systematic system test in OSS generally, and for the
Apache project in particular. So the appropriate comparison would be to
presystem-test commercial software. Thus, the defect count would include
all defects found during the system test stage or after (all defects found
after “feature test complete,” in the jargon of the quality gate system).

Defect Density Results Table 10.3 compares Apache to the previous com-
mercial projects. Project B did not have enough time in the field to
accumulate customer-reported problems and we do not have presystem
test defects for project A. The defect data for Apache was obtained from
BUGDB, and for commercial projects from ECMS as described previously.
Only defects resulting in a code change are presented in table 10.3.

The defect density in commercial projects A, C, D, and E varies sub-
stantially. Although the user-perceived defect density of the Apache

Two Case Studies of Open Source Software Development 183

Table 10.3
Comparison of Defect Density Measures

Measure Apache A C D E

Postrelease Defects/KLOCA 2.64 0.11 0.1 0.7 0.1

Postrelease Defects/KDelta 40.8 4.3 14 28 10

Postfeature test Defects/KLOCA 2.64 * 5.7 6.0 6.9

Postfeature test Defects/KDelta 40.8 * 164 196 256

184 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

product is inferior to that of the commercial products, the defect density
of the code before system test is much lower. This latter comparison may
indicate that fewer defects are injected into the code, or that other defect-
finding activities such as inspections are conducted more frequently or
more effectively.

Time to Resolve Problem Reports

Q6: How long did it take to resolve problems? Were high-priority problems
resolved faster than low-priority problems? Has resolution interval decreased
over time?
The distribution of Apache PR resolution interval is approximated by its
empirical distribution function that maps the interval in days to propor-
tion of PRs resolved within that interval. Fifty percent of PRs are resolved
within a day, 75 percent within 42 days, and 90 percent within 140 days.
Further investigation showed that these numbers depend on priority, time
period, and whether the PR causes a change to the code.

Priority We operationalized priority in two ways. First, we used the prior-
ity field reported in the BUGDB database. Priority defined in this way has
no effect on interval. This lack of impact is very different from commer-
cial development, where priority is usually strongly related to interval. In
Apache BUGDB, the priority field is entered by a person reporting the
problem and often does not correspond to the priority as perceived by the
core developer team.

In our second approach for operationalizing priority, we categorized the
modules into groups according to how many users depended on them. PRs
were then categorized by the module to which they pertained. Such cate-
gories tend to reflect priorities, since they reflect number of users (and
developers) affected. Figure 10.4 shows comparisons among such groups
of modules. The horizontal axis shows the interval in days and the verti-
cal axis shows the proportion of MRs resolved within that interval. “Core”
represents the kernel, protocol, and other essential parts of the server that
must be present in every installation. “Most sites” represents widely
deployed features that most sites will choose to include. PRs affecting
either “Core” or “Most sites” should be given higher priority, because they
potentially involve many (or all) customers and could potentially cause
major failures. On the other hand, “OS” includes problems specific to
certain operating systems, and “Major optional” includes features that are
not as widely deployed. From a customer’s point of view, “Core” and “Most

Two Case Studies of Open Source Software Development 185

sites” PRs should be solved as quickly as possible, and the “OS” and “Major
optional” should generally receive lower priority.

The data (figure 10.4) show exactly this pattern, with much faster close
times for the higher-priority problems. The differences between the trends
in the two different groups are significant (p-value < 0.01 using the
Kolmogorov-Smirnov test), whereas the trends within groups do not
differ significantly. The documentation PRs show mixed behavior, with
“low-priority” behavior for intervals under five days and “high-priority”
behavior otherwise. This may be explained by a lack of urgency for
documentation problems (the product still operates), despite being very
important.

Reduction in Resolution Interval To investigate whether the problem
resolution interval improves over time, we broke the problems into two
groups according to the time they were posted (before or after January 1,
1997). The interval was significantly shorter in the second period (p-value
< 0.01). This change indicates that this important aspect of customer
support improved over time, despite the dramatic increase in the number
of users.

Days open

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

core
most sites
documentation
major optional
os

Figure 10.4
Proportion of changes closed within given number of days

186 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Hypotheses
In this case study, we reported results relevant to each of our research ques-
tions. Specifically, we reported on:

� The basic structure of the development process
� The number of participants filling each of the major roles
� The distinctiveness of the roles, and the importance of the core
developers
� Suggestive, but not conclusive, comparisons of defect density and pro-
ductivity with commercial projects
� Customer support in OSS

Case studies such as this provide excellent fodder for hypothesis devel-
opment. It is generally inappropriate to generalize from a single case, but
the analysis of a single case can provide important insights that lead to
testable hypotheses. In this section, we cast some of our case study find-
ings as hypotheses, and suggest explanations of why each hypothesis
might be true of OSS in general. In the following section, we present results
from Study 2, another case study, which allows us to test several of these
hypotheses. All the hypotheses can be tested by replicating these studies
using archival data from other OSS developments.

Hypothesis 1: Open source developments will have a core of developers who
control the code base. This core will be no larger than 10 to 15 people, and will
create approximately 80 percent or more of the new functionality.

We base this hypothesis both on our empirical findings in this case and
on observations and common wisdom about maximum team size. The core
developers must work closely together, each with fairly detailed knowledge
of what other core members are doing. Without such knowledge, they
would frequently make incompatible changes to the code. Since they form
essentially a single team, they can be overwhelmed by communication and
coordination overhead issues that typically limit the size of effective teams
to 10 to 15 people.

Hypothesis 2: For projects that are so large that 10 to 15 developers
cannot write 80 percent of the code in a reasonable time frame, a strict
code ownership policy will have to be adopted to separate the work of
additional groups, creating, in effect, several related OSS projects.

The fixed maximum core team size obviously limits the output of fea-
tures per unit time. To cope with this problem, a number of satellite pro-
jects, such as Apache-SSL, were started by interested parties. Some of these

projects produced as much or more functionality than Apache itself. It
seems likely that this pattern of core group and satellite groups that add
unique functionality targeted to a particular group of users will frequently
be adopted in such cases.

In other OSS projects, such as Linux, the kernel functionality is also small
compared to application and user interface functionalities. The nature of
relationships between the core and satellite projects remains to be inves-
tigated; yet it might serve as an example of how to break large monolithic
commercial projects into smaller, more manageable pieces. We can see the
examples where the integration of these related OSS products is performed
by a commercial organization; for example, Red Hat for Linux, ActivePerl
for Perl, and CYGWIN for GNU tools.

Hypothesis 3: In successful open source developments, a group larger by an
order of magnitude than the core will repair defects, and a yet larger group
(by another order of magnitude) will report problems.

Hypothesis 4: Open source developments that have a strong core of devel-
opers, but never achieve large numbers of contributors beyond that core will
be able to create new functionality, but will fail because of a lack of resources
devoted to finding and repairing defects.

Many defect repairs can be performed with only a limited risk of inter-
acting with other changes. Problem reporting can be done with no risk of
harmful interaction at all. Since these types of work typically have fewer
dependencies among participants than does the development of new func-
tionality, potentially much larger groups can work on them. In successful
development, these activities will be performed by larger communities,
freeing up time for the core developers to develop new functionality.
Where an OSS development fails to stimulate wide participation, either the
core will become overburdened with finding and repairing defects, or the
code will never reach an acceptable level of quality.

Hypothesis 5: Defect density in open source releases will generally be lower
than commercial code that has only been feature-tested; that is, received a
comparable level of testing.

Hypothesis 6: In successful open source developments, the developers will
also be users of the software.

In general, open source developers are experienced users of the software
they write. They are intimately familiar with the features they need, and
the correct and desirable behavior. Since the lack of domain knowledge is

Two Case Studies of Open Source Software Development 187

188 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

one of the chief problems in large software projects (Curtis, Krasner, and
Iscoe 1988), one of the main sources of error is eliminated when domain
experts write the software. It remains to be seen whether this advantage
can completely compensate for the absence of system testing. In any event,
where the developers are not also experienced users of the software, they
are highly unlikely to have the necessary level of domain expertise or the
necessary motivation to succeed as an OSS project.

Hypothesis 7: OSS developments exhibit very rapid responses to customer
problems.

This observation stems both from the “many eyeballs implies shallow
bugs” observation cited earlier (Raymond 2001), and the way that fixes are
distributed. In the “free” world of OSS, patches can be made available to
all customers nearly as soon as they are made. In commercial develop-
ments, by contrast, patches are generally bundled into new releases, and
made available according to some predetermined schedule.

Taken together, these hypotheses, if confirmed with further research on
OSS projects, suggest that OSS is a truly unique type of development
process. It is tempting to suggest that commercial and OSS practices might
be fruitfully hybridized, a thought which led us to collect and analyze the
data reported in Study 2.

Subsequent to our formulation of these hypotheses, we decided to repli-
cate this analysis on another open source project. We wanted to test these
hypotheses, where possible, and we particularly wanted to look at a hybrid
commercial/OSS project in order to improve our understanding of how
they could be combined, and what the results of such a combination would
be. Recent developments in the marketplace brought forth several such
hybrid projects, most notably the Mozilla browser, based on the commer-
cial Netscape browser source code.

In the next section, we use the methodology described earlier to char-
acterize Mozilla development, to answer the same basic questions about
the development process, and insofar as possible, test the hypotheses we
developed in Study 1.

Study 2: The Mozilla Project

Mozilla has a process with commercial roots. In the face of stiff competi-
tion, Netscape announced in January, 1998 that their Communicator
product would be available free of charge, and that the source code would
also be free of charge. Their stated hope was to emulate the successful

development approach of projects such as Linux. The group mozilla.org
was chartered to act as a central point of contact and “benevolent dicta-
tor” for the open source effort. Compared to the Apache project, the work
in the Mozilla project is much more diverse: it supports many technolo-
gies including development tools (CVS, Bugzilla, Bonsai, Tinderbox) that
are not part of the Web browser. It also builds toolkit-type applications,
some of which are used to build a variety of products, such as Komodo
from ActiveState. At the time of writing, it is unclear how well Netscape’s
open source strategy has succeeded.

There are many ways in which characteristics of open source and com-
mercial development might be combined, and Mozilla represents only a
single point in a rather large space of possibilities. It must be kept in mind,
therefore, that very different results might be obtained from different
hybridization strategies. In our conclusions, we describe what we see as
the strengths and weaknesses of the Mozilla approach, and suggest other
strategies that seem promising.

We base our description of the Mozilla development process on refer-
ences2 with a view from the inside (Baker 2000; Paquin and Tabb 1998),
from the outside (Oeschger and Boswell 2000), and from a historic per-
spective (Hecker 1999; Zawinski 1999).

The Mozilla Development Process

Q1: What was the process used to develop Mozilla?
Mozilla initially had difficulty attracting the level of outside contributions
that was expected. Mitchell Baker, “Chief Lizard Wrangler” of mozilla.org,
expressed the view that “the public expectations for the Mozilla project
were set astoundingly high. The number of volunteers participating in the
Mozilla project did not meet those expectations. But there has been an
important group of volunteers providing critical contributions to the
project since long before the code was ready to use.” After one year, one
of the project leaders quit, citing lack of outside interest because of the
large size, cumbersome architecture, absence of a working product, and
lack of adequate support from Netscape.

However, after the documentation was improved, tutorials were written,
and the development tools and processes refined, participation started
slowly to increase. Some documents now available address the entire range
of outsider problems (such as Oeschger and Boswell 2000). Also, the fact
that the development tools were exported to be used in commercial soft-
ware projects at Hewlett-Packard, Oracle, Red Hat, and Sun Microsystems

Two Case Studies of Open Source Software Development 189

190 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

(Williams 2000), is evidence of their high quality and scalability. At the
time of this writing, Mozilla is approaching its first release—1.0.

Mozilla has substantial documentation on the architecture and the tech-
nologies used, and has instructions for building and testing. It also has
Web tools to provide code cross-reference (LXR) and change presentation
(Bonsai) systems. A brief point-by-point comparison of the Apache and
Mozilla processes is presented in table 10.8 in the appendix to this chapter.
Next, we describe the necessary details.

Roles and Responsibilities Mozilla is currently operated by the mozilla.org
staff (12 members at the time of this writing) who coordinate and guide
the project, provide process, and engage in some coding. Only about four
of the core members spend a significant part of their time writing code for
the browser application. Others have roles dedicated to such things as com-
munity QA, milestone releases, Web site tools and maintenance, and tools
such as Bugzilla that assist developers. Although the external participation
(beyond Netscape) has increased over the years, even some external people
(from Sun Microsystems, for example) are working full-time, for pay, on
the project.

Decision-making authority for various modules is delegated to individ-
uals in the development community who are close to that particular code.
People with an established record of good quality code can attempt to
obtain commit access to the CVS repository. Directories and files within a
particular module can be added or changed by getting the permission of
the module owner. Adding a new module requires the permission of
mozilla.org. Much responsibility is delegated by means of distributed
commit access and module ownership; however, mozilla.org has the ulti-
mate decision-making authority, and retains the right to designate and
remove module owners, and to resolve all conflicts that arise.

Identifying Work to Be Done Mozilla.org maintains a roadmap document
(Eich 2001) that specifies what will be included in future releases, as
well as dates for which releases are scheduled. Mozilla.org determines
content and timing, but goes to considerable lengths to ensure that the
development community is able to comment on and participate in these
decisions.

Anyone can report bugs or request enhancements. The process and hints
are presented in Mozilla Project. The bug reporting and enhancement
request process uses the Bugzilla problem-reporting tool, and requires
requesters to set up an account on the system. Bugzilla also has tools that

Two Case Studies of Open Source Software Development 191

allow the bug reporter to see the most recent bugs, and if desired, to search
the entire database of problem reports. Potential bug reporters are urged
to use these tools to avoid duplicate bug reports. In addition, bug reporters
are urged to come up with the simplest Web page that would reproduce
the bug, in order to expedite and simplify the bug’s resolution. Bugzilla
provides a detailed form to report problems or describe the desired
enhancement.

Assigning and Performing Development Work The mozilla.org members
who write browser code appear to focus on areas where they have exper-
tise and where work is most needed to support upcoming releases. The
development community can browse Bugzilla to identify bugs or enhance-
ments on which they would like to work. Fixes are often submitted as
attachments to Bugzilla problem reports. Developers can mark Bugzilla
items with a “helpwanted” keyword if they think an item is worth doing
but don’t themselves have the resources or all the required expertise. Dis-
cussions can also be found in Mozilla news groups, which may give devel-
opment community members ideas about where to contribute. Mozilla.org
members may use the Mozilla Web pages to note particular areas where
help is needed. When working on a particular Bugzilla item, developers are
encouraged to record that fact in Bugzilla in order to avoid duplication of
effort.

Prerelease Testing Mozilla.org performs a daily build, and runs a daily
minimal “smoke test” on the build for several major platforms, in order to
ensure the build is sufficiently stable to allow development work on it to
proceed. If the build fails, “people get hassled until they fix the bits they
broke.” If the smoke test identifies bugs, they are posted daily so that devel-
opers are aware of any serious problems in the build.

Mozilla currently has six product area test teams that take responsibility
for testing various parts or aspects of the product, such as standards com-
pliance, the mail/news client, and internationalization. Netscape person-
nel are heavily represented among the test teams, but the teams also
include mozilla.org personnel and many others. The test teams maintain
test cases and test plans, as well as other materials such as guidelines for
verifying bugs and troubleshooting guides.

Inspections Mozilla uses two stages of code inspections: module owners
review a patch in the context of the module and a smaller designated group
(referred to as superreviewers, who are technically highly accomplished)

review a patch for its interaction with the code base as a whole before it
is checked in.

Managing Releases Mozilla runs a continuous build process (Tinderbox)
that shows what parts of the code have issues for certain builds and under
certain platforms. It highlights the changes and their authors. It also
produces binaries nightly and issues “Milestones” approximately monthly.
As Baker (2000) points out:

[T]he Milestone releases involve more than Tinderbox. They involve project man-

agement decisions, usually a code freeze for a few days, a milestone branch, elimi-

nating “stop-ship” bugs on the branch and a bit of polishing. The decision when a

branch is ready to be released as a Milestone is a human one, not an automated

Tinderbox process. These Milestone decisions are made by a designated group,

known as “drivers@mozilla.org,” with input from the community.

Quantitative Results
In this section, we report results that address the same six basic questions
we answered with respect to Apache in the previous section. There are
some differences between the projects that must be understood in order
to compare Mozilla to Apache in ways that make sense.

First, Mozilla is a much bigger project. As shown in table 10.4, Apache
had about 6,000 MRs, 18,000 delta, and 220,000 lines of code added. In
contrast, Mozilla consists of 78 modules (according to the Mozilla Project
at the time of this writing), some of which are much larger than the entire
Apache project. The following analyses are based on seven of the Mozilla
modules.

The Size of the Mozilla Development Community

Q2: How many people wrote code for new functionality? How many people
reported problems? How many people repaired defects?
By examining all change login and comment records in CVS, we found
486 people who contributed code and 412 who contributed code to PR
fixes that were incorporated. Numbers of contributors to individual
modules are presented in table 10.5.

Table 10.5 presents numbers of people who contributed code submis-
sions, problem fixes, and who reported problems. Because some problem
reports do not correspond to a module in cases when the fix was not
created or committed, we provide numbers for people who reported pro-
blems resulting in a fix and estimate of the total number using the overall

192 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Two Case Studies of Open Source Software Development 193

Table 10.4
Sizes of Apache, five commercial projects, and seven Mozilla modules

MRs (K) Delta (K) Lines added (K) Years Developers

Apache 6 18 220 3 388

A 3.3 129 5,000 3 101

B 2.5 18 1,000 1.5 91

C 1.1 2.8 81 1.3 17

D 0.2 0.7 21 1.7 8

E 0.7 2.4 90 1.5 16

/layout 12.7 42 800 2.6 174

/js 4.6 14 308 2.6 127

/rdf 4.1 12 274 2 123

/netwerk 3.2 10 221 1.6 106

/editor 2.9 8 203 2 118

/intl 2 5 118 1.8 87

/xpinstall 1.9 5 113 1.7 102

Table 10.5
Population of contributors to seven Mozilla modules

Number of Number of Number of Number of

people whose people whose people who people who

code submissions fixes were reported bugs reported

were included added to that resulted in problems

in the code base code base code changes (estimated)

/layout 174 129 623 3035

/js 127 51 147 716

/rdf 123 79 196 955

/netwerk 106 74 252 1228

/editor 118 85 176 857

/intl 87 47 119 579

/xpinstall 102 64 141 687

194 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

ratio in Mozilla of the total number of people who reported PRs divided
by the number of people who reported PRs that resulted in code changes.
Based on the Bugzilla database, 6,837 people reported about 58,000 PRs,
and 1,403 people reported 11,616 PRs that can be traced to changes to the
code. To estimate the total number of people reporting PRs for a module
(rightmost column), we multiplied the preceding column by 6,837/1,403.

External Participation Because Mozilla began as a commercial project and
only later adopted an open source approach; in order to understand the
impact of this change, it is essential to understand the scope and nature
of external participation. To this end, we examined the extent and the
impact of external participation in code contributions, fix contributions,
and defect reporting.

Figure 10.5 plots external participation over time. The measures include
the fraction of external developers and the fraction of MRs, delta, and
number of added lines contributed monthly by external developers.

Figure 10.5 shows gradually increasing participation over time, leveling
off in the second half of 2000. It is worth noting that outside participants
tend, on average, to contribute fewer changes and less code relative to

July 1, 1998 January 1, 1999 July 1, 1999 January 1, 2000 July 1, 2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Years

F
ra

ct
io

n

Fraction of external logins per month
Fraction of external MRs per month
Fraction of external deltas per month
Fraction of external lines added per month

Figure 10.5
Trends of external participation in Mozilla project

Two Case Studies of Open Source Software Development 195

internal participants. It might reflect the part-time nature of the external
participation.

Much larger external participation may be found in problem reporting.
About 95 percent of the 6,873 people who created PRs were external, and
they reported 53 percent of the 58,000 PRs.

Q3: Were these functions carried out by distinct groups of people; that is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most
of the work?
Figure 10.6 shows cumulative distribution contributions (as for Apache in
figure 10.1). The developer participation does not appear to vary as much
as in the Apache project. In particular, Mozilla development had much
larger core groups relative to the total number of participants. The partic-
ipation curve for Mozilla is more similar to the curves of commercial pro-
jects presented in figure 10.3.

The problem reporting participation was very uniform in Apache, but
contributions vary substantially in Mozilla, with 50 percent of PRs reported
by just 113 people, with the top person reporting over 1,000 PRs (com-
pared to Apache, where the top reporter submitted only 32 PRs). Forty-six
of these 113 PR submitters did not contribute any code, and only 25 of
the 113 were external. Unlike Apache, where testing was conducted almost

1 2 5 10 20 50 100 200

0.0

0.2

0.4

0.6

0.8

1.0

Number of individuals

/layout
/js
/rdf
/netwerk
/editor
/intl
/xpinstall

Figure 10.6
The cumulative distribution of contributions to the code base for five Mozilla

modules

196 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

exclusively by the larger community, and not the core developers, there is
very substantial internal problem reporting in Mozilla, with a significant
group of dedicated testers. Nevertheless, external participants also con-
tribute substantially to problem reporting.

Given that most of the core developers work full-time on the project, we
might expect the productivity figures to be similar to commercial projects
(which, when measured in deltas or lines added, were considerably higher
than for Apache). In fact, the productivity of Netscape developers does
appear to be quite high, and even exceeds the productivity of the com-
mercial projects that we consider (see table 10.6).

As before, we defined core or “top” developers in each module as groups
of the most productive developers that contributed 83 percent of MRs and
88 percent of lines added. There was one person in the “core” teams of all
seven selected modules and 38 developers in at least two “core” teams.
Almost two-thirds (64 out of 102) of the developers were in only a single
core team of the selected modules.

Although the productivity numbers might be different due to numerous
differences between projects, the data certainly appear to suggest that pro-
ductivity in this particular hybrid project is comparable to or better than
the commercial projects we examined.

Code Ownership

Q4: Where did the code contributors work in the code? Was strict code
ownership enforced on a file or module level?
For the Apache project, we noted that the process did not include any “offi-
cial” code ownership; that is, there was no rule that required an owner to
sign off in order to commit code to an owned file or module. We looked

Table 10.6
Comparison of productivity of the “top” developers in selected Mozilla modules

Module KMR/dev/year KLOCA/dev/year Size of core team

/layout 0.17 11 35

/js 0.13 16 24

/rdf 0.11 11 26

/netwerk 0.13 8.4 24

/editor 0.09 8 25

/intl 0.08 7 22

/xpinstall 0.07 6 22

Two Case Studies of Open Source Software Development 197

at who actually committed code to various modules in order to try to deter-
mine whether a sort of de facto code ownership had arisen in which one
person actually committed all or nearly all the code for a given module.
As we reported, we did not find a clear ownership pattern.

In Mozilla, on the other hand, code ownership is enforced. According
to Howard 2000 and the Mozilla Project, the module owner is responsible
for fielding bug reports, enhancement requests, and patch submissions in
order to facilitate good development. Also, before code is checked in, it
must be reviewed by the appropriate module owner and possibly others.
To manage check in privileges, Mozilla uses a Web-based tool called
despot.

Because of this pattern of “enforced ownership,” we did not believe that
we would gain much by looking at who actually contributed code to which
module, since those contributions all had to be reviewed and approved by
the module owner. Where there is deliberate, planned code ownership,
there seemed to be no purpose to seeing if de facto ownership had arisen.

Defects

Q5: What is the defect density of Mozilla code?
Because Mozilla has yet to have a nonbeta release, all PRs may be consid-
ered to be post-feature-test (i.e., prerelease). The defect density appears
to be similar to, or even slightly lower than Apache (see table 10.7). The

Table 10.7
Comparison of post-feature-test defect density measures

Module #PR/KDelta #PR/KLOC added

Apache 40.8 2.6

C 164 5.7

D 196 6.0

E 256 6.9

/layout 51 2.8

/js 19 0.7

/rdf 27 1.4

/netwerk 42 3.1

/editor 44 2.5

/intl 20 1.6

/xpinstall 56 4.0

198 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

defect density, whether measured per delta or per thousand lines of
code, is much smaller than the commercial projects, if one counts all
defects found after the feature test. The highest defect density module has
substantially lower defect density than any of the commercial projects,
post-feature-test. Compared to the postrelease defect densities of the com-
mercial products, on the other hand, Mozilla has much higher defect
densities (see table 10.3).

Since the Mozilla project has yet to issue its first nonbeta release, we
cannot assess postrelease defect density at the time of this writing.
Although these Mozilla results are encouraging, they are difficult to inter-
pret definitively. Without data on postrelease defects, it is difficult to know
whether the post-feature-test densities are low because there really are rel-
atively few defects in the code, or because the code has not been exercised
thoroughly enough. As we reported earlier, though, more than 6,000
people have reported at least one problem with Mozilla, so we are inclined
to believe that the low defect densities probably reflect relatively low defect
code, rather than code that has not been exercised.

Time to Resolve Problem Reports

Q6: How long did it take to resolve problems? Were high-priority problems
resolved faster than low-priority problems? Has resolution interval decreased
over time?
Out of all 57,966 PRs entered in the Bugzilla database, 99 percent have a
valid creation date and status change date; 85 percent of these have passed
through the state RESOLVED and 46 percent of these have resolution
FIXED, indicating that a fix was checked into the codebase; 83 percent
FIXED bugs have passed through the state VERIFIED, indicating that
inspectors agreed with the fix.

Figure 10.7 plots the cumulative distribution of the interval for all
resolved PRs broken down by whether the PR resolution is FIXED, by
priority, by the module, and by date (made before or after January 1, 2000).
All four figures show that the median resolution interval is much longer
than for Apache. We should note that half of the FIXED PRs had 43 percent
or more of their resolution interval spent after the stage RESOLVED and
before the stage VERIFIED. It means that mandatory inspection of changes
in Mozilla almost doubles the PR resolution interval. But this increase does
not completely account for the difference between Apache and Mozilla
intervals; half of the observed Mozilla interval is still significantly longer
than the Apache interval.

Two Case Studies of Open Source Software Development 199

1
2

5
10

20
50

10
0

20
0

50
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
R

s
b

y
fi

x

D
ay

s
op

en
 +

 1

Cumulative probability

F
IX

E
D

O
T

H
E

R

1
2

5
10

20
50

10
0

20
0

50
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
R

s
b

y
p

ri
o

ri
ty

D
ay

s
op

en
 +

 1

Cumulative probability

P
1

P
2

P
3

P
4

P
5

1
2

5
10

20
50

10
0

20
0

50
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
R

s
b

y
m

o
d

u
le

D
ay

s
op

en
 +

 1

Cumulative probability

/e
di

to
r

/in
tl

/js /la
yo

ut
/n

et
w

er
k

/r
df

/x
pi

ns
ta

ll

1
2

5
10

20
50

10
0

20
0

50
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
R

s
b

y
d

at
e

D
ay

s
op

en
 +

 1

Cumulative probability

af
te

r
20

00
be

fo
re

 2
00

0

Fi
g

u
re

 1
0.

7
Pr

ob
le

m
 r

es
ol

u
ti

on
 i

n
te

rv
al

200 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Half of the PRs that result in fixes or changes are resolved in less than
30 days, and half of the PRs that do not result in fixes are resolved in less
than 15 days. This roughly corresponds to the inspection overhead (inspec-
tions are only done for FIXED PRs).

There is a significant relationship between interval and priority. Half of
the PRs with priority P1 and P3 are resolved in 30 days or less, and half of
priority P2 PRs are resolved in 80 days or less, whereas the median interval
of P4 and P5 PRs exceeds 100 days. The recorded priority of PRs did not
matter in the Apache context, but the “priority” implicitly determined by
affected functionality had an effect on the interval. These results appear to
indicate that Mozilla participants were generally sensitive to PR priority,
although it is not clear why priority P3 PRs were resolved so quickly.

There is substantial variation in the PR resolution interval by module.
The PRs have a median interval of 20 days for /editor and /js modules and
50 days for /layout and /netwerk modules. This is in contrast to Apache,
where modules could be grouped by the number of users they affect. Fur-
thermore, /editor affects fewer users than /layout (2-D graphics), yet reso-
lution of the latter’s problems is slower, unlike in Apache, where the
resolution time decreased when the number affected users increased.

The resolution interval decreases drastically between the two periods,
possibly because of the increasing involvement of external developers or
maturity of the project. We observed a similar effect in Apache.

Hypotheses Revisited

Hypothesis 1: Open source developments will have a core of developers who
control the code base. This core will be no larger than 10 to 15 people, and
will create approximately 80 percent or more of the new functionality.

Hypothesis 2: For projects that are so large that 10 to 15 developers cannot
write 80 percent of the code in a reasonable time frame, a strict code owner-
ship policy will have to be adopted to separate the work of additional groups,
creating, in effect, several related OSS projects.

These hypotheses are supported by the Mozilla data. The essential insight
that led to these hypotheses is that when several people work on the same
code, there are many potential dependencies among their work items.
Managing these dependencies can be accomplished informally by small
groups of people who know and trust each other, and communicate fre-
quently enough so that each is generally aware of what the others are
doing.

At some point—perhaps around an upper limit of 10 to 15 people—this
method of coordinating the work becomes inadequate. There are too many
people involved for each to be sufficiently aware of the others. The core
groups for the various modules in Mozilla (with module size comparable
to Apache in the range of 3 to 12 thousand delta per year and of duration
longer than one year) range from 22 to 36 people and so are clearly larger
than we contemplated in these hypotheses. And, much as we predicted, a
form of code ownership was adopted by the various Mozilla teams.

There are at least two ways, though, that the Mozilla findings cause us
to modify these hypotheses. Although the size of the project caused the
creation of multiple separated project “teams” as we had anticipated (e.g.,
Chatzilla and other projects that contribute code to an /extensions direc-
tory), we observe code ownership on a module-by-module basis, so that
the code owner must approve any submission to the owned files. This
process uses ownership to create a mechanism whereby a single individ-
ual has sufficient knowledge and responsibility to guard against conflicts
within the owned part of the code. There is no “core” group as in the
Apache sense, where everyone in the privileged group is permitted to
commit code anywhere.

This leads to a further point that not only did the Mozilla group use
ownership in ways we did not quite expect, they used other mechanisms
to coordinate the work that are independent of ownership. Specifically,
they had a more concretely defined process, and they had a much stricter
policy regarding inspections. Both of these mechanisms serve also to main-
tain coordination among different work items. Based on these additional
findings, we would rephrase Hypotheses 1 and 2 as follows:

Hypothesis 1a: Open source developments will have a core of developers who
control the code base, and will create approximately 80 percent or more of
the new functionality. If this core group uses only informal ad hoc means of
coordinating their work, the group will be no larger than 10 to 15 people.

Hypothesis 2a: If a project is so large that more than 10 to 15 people are
required to complete 80 percent of the code in the desired time frame, then
other mechanisms, rather than just informal ad hoc arrangements, will be
required to coordinate the work. These mechanisms may include one or more
of the following: explicit development processes, individual or group code
ownership, and required inspections.

Hypothesis 3: In successful open source developments, a group larger by an
order of magnitude than the core will repair defects, and a yet larger group
(by another order of magnitude) will report problems.

Two Case Studies of Open Source Software Development 201

202 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

For the modules that we report on in Mozilla, we observed large differ-
ences between the size of core team (22 to 35), the size of the communi-
ties that submit bug fixes that are incorporated into the code (47 to 129)
and that find and report bugs that are fixed (119 to 623), and the estimated
total population of people that report defects (600 to 3,000). These differ-
ences are substantial and in the direction of the hypothesis, but are not as
large as in Apache. In particular, the group that adds new functionality is
larger than we would have expected. This is likely due to the hybrid nature
of the project, where the core developers are operating in a more indus-
trial mode, and have been assigned to work full-time on the project. Since
Mozilla does not deviate radically from the prediction, and since the pre-
diction was meant to apply only to pure open source projects, we don’t
believe that it requires modification at this time.

Hypothesis 4: Open source developments that have a strong core of devel-
opers but never achieve large numbers of contributors beyond that core will
be able to create new functionality, but will fail because of a lack of resources
devoted to finding and repairing defects.

We were not able to test this hypothesis with the Mozilla data, since it
did in fact achieve large numbers of contributors.

Hypothesis 5: Defect density in open source releases will generally be lower
than commercial code that has only been feature-tested; that is, received a
comparable level of testing.

The defect density of the Mozilla code was comparable to the Apache
code; hence we may tentatively regard this hypothesis as supported. In
Mozilla, there appears to be a sizable group of people who specialize in
reporting defects—an activity corresponding to testing activity in com-
mercial projects. Additionally, as we mentioned previously, Mozilla has a
half-dozen test teams that maintain test cases, test plans, and the like. The
project also uses a sophisticated problem-reporting tool, Bugzilla, that
keeps track of top problems to speed problem reporting and reduce dupli-
cate reports, and maintains continuous multiplatform builds. Inspections,
testing, and better tools to support defect reporting apparently compen-
sate for larger and more complex code. We must be very cautious in inter-
preting these results, because it is possible that large numbers of defects
will be found when the product is released.

Hypothesis 6: In successful open source developments, the developers will
also be users of the software.

The reasoning behind this hypothesis was that low defect densities are
achieved because developers are users of the software and hence have con-
siderable domain expertise. This puts them at a substantial advantage rel-
ative to many commercial developers who vary greatly in their domain
expertise. This certainly appears to be true in the Mozilla case. Although
we did not have data on Mozilla use by Mozilla developers, it is wildly
implausible to suggest that the developers were not experienced browser
users, and thus “domain experts” in the sense of this hypothesis.

Hypothesis 7: OSS developments exhibit very rapid responses to customer
problems.

In the hybrid Mozilla case, response times are much longer than in the
case of Apache. This may be due to the more commercial-like aspects of
development; that is, the need to inspect, to submit the code through the
owner, and so on. It also uses a 30-day release (milestone) cycle that more
closely resembles commercial processes than the somewhat more rapid
Apache process. Furthermore, the Mozilla product is still in the beta stage,
and that might partly explain slower response times. Hence, it is not clear
that the Mozilla data bear on this hypothesis, as long as it is taken to apply
only to OSS, not to hybrid projects.

It should be noted that rapid responses to customer problems together
with low defect density may significantly increase the availability of OSS
software by minimizing the number and shortening the duration of down-
time of customer’s systems.

Conclusion: Hybrid Hypotheses

As we pointed out in the introduction, there are many ways in which
elements of commercial and open source processes could be combined,
and Mozilla represents only a single point in that space. The essential
differences have to do with coordination, selection, and assignment of the
work.

Commercial development typically uses a number of coordination
mechanisms to fit the work of each individual into the project as a whole
(see for example Grinter, Herbsleb, and Perry 1999 and Herbsleb and
Grinter 1999). Explicit mechanisms include such things as interface spec-
ifications, processes, plans, staffing profiles, and reviews. Implicit mecha-
nisms include knowledge of who has expertise in what area, customs, and
habits regarding how things are done. In addition, of course, it is possible
to substitute communication for these mechanisms. So, for example, two

Two Case Studies of Open Source Software Development 203

people could develop interacting modules with no interface specification,
merely by staying in constant communication with each other. The
“communication-only” approach does not scale, of course, as size and
complexity quickly overwhelm communication channels. It is always
necessary, though, as the default means of overcoming coordination prob-
lems, as a way to recover if unexpected events break down the existing
coordination mechanisms, and to handle details that need to be worked
out in real time.

Apache adopts an approach to coordination that seems to work extremely
well for a small project. The server itself is kept small. Any functionality
beyond the basic server is added by means of various ancillary projects that
interact with Apache only through Apache’s well-defined interface. That
interface serves to coordinate the efforts of the Apache developers with
anyone building external functionality, and does so with minimal ongoing
effort by the Apache core group. In fact, control over the interface is asym-
metric, in that the external projects must generally be designed to what
Apache provides. The coordination concerns of Apache are thus sharply
limited by the stable asymmetrically controlled interface.

The coordination necessary within this sphere is such that it can be suc-
cessfully handled by a small core team using primarily implicit mecha-
nisms; for example, a knowledge of who has expertise in what area, and
general communication about what is going on and who is doing what,
when. When such mechanisms are sufficient to prevent coordination
breakdowns, they are extremely efficient. Many people can contribute code
simultaneously, and there is no waiting for approvals, permission, and so
forth, from a single individual. The core people just do what needs to be
done. The Apache results show the benefits in speed, productivity, and
quality.

The benefit of the larger open source community for Apache is primar-
ily in those areas where coordination is much less of an issue. Bug fixes
occasionally become entangled in interdependencies; however, most of the
effort in bug fixing is generally in tracking down the source of the problem.
Investigation, of course, cannot cause coordination problems. The tasks of
finding and reporting bugs are completely free of interdependencies, in the
sense that they do not involve changing the code.

The Mozilla approach has some, but not all, of the Apache-style OSS
benefits. The open source community has taken over a significant portion
of the bug finding and fixing, as in Apache, helping with these low-
interdependency tasks. However, the Mozilla modules are not as indepen-

204 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Two Case Studies of Open Source Software Development 205

dent from one another as the Apache server is from its ancillary projects.
Because of the interdependence among modules, considerable effort (i.e.,
inspections) needs to be spent in order to ensure that the interdependen-
cies do not cause problems. In addition, the modules are too large for a
team of 10 to 15 to do 80 percent of the work in the desired time. There-
fore, the relatively free-wheeling Apache style of communication and
implicit coordination is likely not feasible. The larger Mozilla core teams
must have more formal means of coordinating their work, which in their
case means a single module owner who must approve all changes to
the module. These characteristics produce high productivity and low
defect density, much like Apache, but at relatively long development
intervals.

The relatively high level of module interdependence may be a result of
many factors. For example, the commercial legacy distinguishes Mozilla
from Apache and many other purely open source projects. One might spec-
ulate that in commercial development, feature content is driven by market
demands, and for many applications (such as browsers) the market gener-
ates great pressure for feature richness. When combined with extreme
schedule pressure, it is not unreasonable to expect that the code com-
plexity will be high and that modularity may suffer. This sort of legacy
may well contribute to the difficulty of coordinating Mozilla and other
commercial-legacy hybrid projects.

It may be possible to avoid this problem under various circumstances,
such as:

� New hybrid projects that are set up like OSS projects, with small teams
owning well-separated modules
� Projects with OSS legacy code
� Projects with a commercial legacy, but where modules are parsed in a way
that minimizes module-spanning changes (see Mockus and Weiss 2001 for
a technique that accomplishes this)

Given this discussion, one might speculate that overall, in OSS projects,
low postrelease defect density and high productivity stem from effective
use of the open source community for the low-interdependence bug
finding and fixing tasks. Mozilla’s apparent ability to achieve defect density
levels like Apache’s argues that even when an open source effort maintains
much of the machinery of commercial development (including elements
of planning, documenting the process and the product, explicit code own-
ership, inspections, and testing), there is substantial potential benefit. In

206 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

particular, defect density and productivity both seem to benefit from
recruiting an open source community of testers and bug fixers. Speed, on
the other hand, seems to require highly modularized software and small
highly capable core teams and the informal style of coordination this
permits.

Interestingly, the particular way that the core team in Apache (and, we
assume, many other OSS projects) is formed might be another of the keys
to their success. Core members must be persistent and very capable to
achieve core status. They are also free, while they are earning their core
status, to work on any task they choose. Presumably they will try to choose
something that is both badly needed and where they have some specific
interest. While working in this area, they must demonstrate a high level
of capability, and they must also convince the existing core team that they
would make a responsible, productive colleague. This setup is in contrast
to that of most commercial development, where assignments are given out
that may or may not correspond to a developer’s interests or perceptions
of what is needed.

We believe that for some kinds of software—in particular, those where
developers are also highly knowledgeable users—it would be worth exper-
imenting, in a commercial environment, with OSS-style “open” work
assignments. This approach implicitly allows new features to be chosen by
the developers/users rather than a marketing or product management
organization.

We expect that time and future research will further test our hypotheses
and will demonstrate new approaches that would elegantly combine the
best technologies from all types of software development environments.
Eventually, we expect such work to blur distinctions between the com-
mercial and OSS processes reported in this article.

Two Case Studies of Open Source Software Development 207

Table 10.8
Comparison of Apache and Mozilla processes

Apache Mozilla

Scope The Apache project we The Mozilla project includes

examined includes only the the browser, as well as a

Apache server. number of development

tools and a toolkit. Some of

these projects are as large or

larger than the Apache

server.

Roles and The Apache Group (AG) Mozilla.org has 12 members,

responsibilities currently has about 25 who are assigned to this

members, all of whom are work full-time. Several

volunteers. They can commit spend considerable time

code anywhere in the server. coding, but most play

The core development group support and coordination

includes the currently active AG roles. Many others have

members as well as others who substantial responsibility—

are very active and under for example, as owners of

consideration for membership the approximately 78

in AG. modules, and leaders of the

6 test teams. Many of the

non-mozilla.org participants

are also paid to spend time

on Mozilla development.

Identifying Since only the AG has commit Anyone can submit a

work to be access to the code, they control problem report or request

done all changes. The process is an an enhancement, but

open one, however, in the sense mozilla.org controls the

that others can propose fixes direction of the project.

and changes, comment on Much of this authority is

proposed changes, and advocate delegated to module owners

them to the AG. and test teams, but

mozilla.org reserves the

right to determine module

ownership and to resolve

conflicts.

Appendix

208 Audris Mockus, Roy T. Fielding, and James D. Herbsleb

Table 10.8
(continued)

Apache Mozilla

Assigning and Anyone can submit patches, Developers make heavy use

performing choosing to work on his or her of the Bugzilla change

development own enhancements or fixes, or management tool to find

work responding to the developer problems or enhancements

mailing list, news group, or on which to work. They are

BUGDB. Core developers have asked to mark changes they

“unofficial” areas of expertise choose to work on in order

where they tend to do much of to avoid duplication of

the work. Other core developers effort. Developers can use

tend to defer to experts in each Bugzilla to request help on

area. a particular change, and to

submit their code.

Prerelease Developers perform something Minimal “smoke screen”

testing like commercial unit and feature tests are performed on daily

testing on a local copy. builds. There are six test

teams assigned to parts of

the product. They maintain

test cases, guidelines, training

materials, and so on, on the

mozilla.org Web site.

Inspections All AG members generally All changes undergo two

review all changes. They are also stages of inspections, one at

distributed to the entire, the module level, and one

development community, who by a member of the highly

also frequently submit qualified “super reviewer”

comments. In general, group. Module owners must

inspections are done before approve all changes in their

commits on stable releases, and modules.

after commits on development

releases.

Managing The job of release manager Mozilla has daily builds and

releases rotates through experienced “Milestone” releases

members of AG. Critical approximately monthly. The

problems are identified; access code is frozen for a few days

to code is restricted. When the prior to a Milestone releases;

release manager determines that critical problems are resolved.

critical problems are resolved A designated group at

and code is stable, the code is mozilla.org is responsible for

released. Milestone decisions.

Acknowledgments

We thank Mitchell Baker for reviewing the Mozilla process description and
Manoj Kasichainula for reviewing the Apache process description. We also
thank all the reviewers for their insightful comments.

This work was done while A. Mockus and J. D. Herbsleb were members
of software Production Research Department at Lucent Technologies’ Bell
Laboratories. This article is a significant extension to the authors’ paper
“A case study of open source software development: the Apache server”
that appeared in the Proceedings of the 22nd International Conference
on Software Engineering, Limerick, Ireland, June 2000 (ICSE 2000), pp.
263–272.

Notes

1. Please see Ang and Eich 2000; Baker 2000; Eich 2001; Hecker 1999; Howard 2000;

Mozilla Project; Oeschger and Boswell 2000; Paquin and Tabb 1998; Williams 2000;

Yeh 1999; and Zawinski 1999.

2. Ang and Eich 2000; Baker 2000; Eich 2001; Hecker 1999; Howard 2000; Mozilla

Project; Oeschger and Boswell 2000; Paquin and Tabb 1998; Williams 2000; Yeh

1999; and Zawinski 1999.

Two Case Studies of Open Source Software Development 209

11 Software Engineering Practices in the GNOME Project

Daniel M. German

One of the main goals of empirical studies in software engineering is to
help us understand the current practice of software development. Good
empirical studies allow us to identify and exploit important practical ideas
that can potentially benefit many other similar software projects. Unfor-
tunately, most software companies consider their source code and devel-
opment practices to be a trade secret. If they allow researchers to investigate
these practices, it is commonly under a nondisclosure agreement. This
practice poses a significant problem: how can other researchers verify the
validity of a study if they have no access to the original source code and
other data that was used in the project? As a consequence, it is common
to find studies in which the reader is asked to trust the authors, unable to
ever reproduce their results. This situation seems to contradict the main
principle of empirical science, which invites challenge and different inter-
pretations of the data, and it is through those challenges that a study
strengthens its validity.

Bruce Perens describes open source software (OSS) as software that pro-
vides the following minimal rights to their users: (1) the right to make
copies of the program and distribute those copies; (2) the right to have
access to the software’s source code; and (3) the right to make improve-
ments to the program (Perens 1999). These rights provide empirical soft-
ware engineering researchers with the ability to inspect the source code
and share it without a nondisclosure agreement. Furthermore, many of
these projects have an “open source approach” to the historical data of the
project (email, bug tracking systems, version control). Finally, researchers
can participate actively or passively in the project in a type of anthropo-
logical study.

The economic model on which closed source software (CSS) projects are
based is fundamentally different than that of OSS projects, and it is nec-
essary to understand that not all good OSS practices might be transferable

to the realm of CSS projects. It is, however, important to identify these
practices, which at the very least will benefit other OSS projects, and at
best, will benefit any software project.

As of March 2003, SourceForge.net lists more than 58,000 projects and
more than 590,000 users. Even though most of these projects might be
small, immature, and composed by only a handful of developers (Krish-
namurthy 2002), the number of projects suggests that the study of prac-
tices in OSS software development is an important area of research with
the potential to benefit a significant audience.

One free software (FS) project (and therefore OSS) of particular interest
is (http://www.gnome.org) the GNU Network Object Model Environment
(GNOME). GNOME is an attempt to create a free (as defined by the General
Public License, or GPL) desktop environment for Unix systems. It is com-
posed of three main components: an easy-to-use graphical user interface
(GUI) environment; a collection of tools, libraries, and components to
develop this environment; and an “office suite” (Gwynne 2003). There are
several features of GNOME that make it attractive from the point of view
of a researcher:

1. GNOME is a widely used product. It is included in almost every major
Linux distribution: Sun offers GNOME for Solaris, IBM offers it for AIX,
and it is also available for Apple’s OS X.
2. Its latest version (2.2) is composed of more than 2 million lines of code
divided into more than 60 libraries and applications.
3. More than 500 individuals have contributed to the project (those who
have write-access to the CVS repository) and contributors are distributed
around the world.
4. GNOME contributors maintain a large collection of information rele-
vant to the project that traces its history: several dozens of mailings lists
(including their archives), a developers, Web site with a large amount of
documentation, a bug tracking system, and a CVS repository with the
entire history of the project dating to 1997.
5. Several commercial companies, such as Red Hat, Sun Microsystems, and
Ximian contribute a significant amount of resources to the project, includ-
ing full-time employees, who are core contributors to the project. In some
cases, these companies are almost completely responsible for the develop-
ment of a library or an application (for an example see “Case Study: Evo-
lution” later in this chapter). Given that most of the contributors of these
projects belong to the same organization, it could be argued that they
resemble CSS projects.

212 Daniel M. German

6. From the economic and management point of view, it provides an inter-
esting playground in which the interests of the companies involved (who
want to make money) have to be balanced with the interests of the indi-
viduals who contribute to the project (who are interested in the openness
and freedom of the project).

Architecture

GNOME targets two different types of audiences. On one hand, it is
intended for the final user, who is interested on having a cohesive set of
applications for the desktop, including an office suite. On the other hand,
it contains a collection of APIs and development tools that assist pro-
grammers in the creation of GUI applications.

The deliverables of GNOME are therefore divided into three main
groups:

1. Libraries. One of the first goals of the project was to provide a library of
GUI widgets for X111. It currently contains libraries for many other pur-
poses: printing, XML processing, audio, spell-checking, SVG and HTML
rendering, among others. Any function that is expected to be used by more
than one application tends to be moved into a library.
2. Applications. The official distribution of GNOME contains a minimal set
of applications that includes a “task bar” (called a “panel” in GNOME),
applets to include in the task bar, a text editor, a windows manager, a file
manager, and helper applications to display a variety of file types. GNOME
also includes a set of optional applications for end users, such as a mail
client, a word processor, a spreadsheet, and an accounting package;
and some for developers, such as an IDE (Integrated Development
Environment).
3. Documentation. Documentation comes in two types: one for developers
and one for final users. The former includes a description of the APIs pro-
vided by the libraries, while the latter describes how to use the different
GNOME applications.

Figure 11.1 depicts the interaction between libraries, applications, and
the rest of the operating system. Libraries provide common functionality
to the applications and they interact with X11, with the operating system,
and with non-GNOME libraries. GNOME applications are expected to use
these libraries in order to be isolated from the running environment. The
window manager (which is required to be GNOME-aware) serves also as
an intermediary between GNOME applications and X11. ORBit is the

Software Engineering Practices in GNOME 213

GNOME implementation of CORBA and it is responsible for the commu-
nication between applications.

Project Organization

The success of an OSS project depends on the ability of its maintainers to
divide it into small parts on which contributors can work with minimal
communication between each other and with minimal impact to the work
of others (Lerner and Triole 2000). The division of GNOME into a collec-
tion of libraries and applications provides a natural way to split the project
into subprojects that are as independent as possible from each other. These
subprojects are usually called modules (module is the name used by CVS to
refer to a directory in the repository). The core distribution of GNOME 2.2
is composed of approximately 60 different modules.

And as a project grows bigger, it tends to be split into further sub-
modules, which minimize the interaction between contributors. Using
softChange to analyze the historical data from the CVS repository
(German and Mockus 2003) has resulted some interesting facts about the
division of work in GNOME. Because CVS does not have a notion of
“transaction” (identifying an atomic operation to the repository), one of
the tasks of softChange is to try to reconstruct these transactions (which
softChange calls a Modification Request, or MR). The CVS data of a total
of 62 modules was analyzed. In order to account for contributors that are
no longer active, it was decided to narrow the analysis to 2002. An MR can
be started only by a contributor who has a CVS account. Sometimes a patch
is submitted, by someone who does not have a CVS account, to one of the

214 Daniel M. German

GNOME
GUI Libs

X11

Operating System

GNOME Windows Manager

O
th

er
 li

b
s

GNOME Applications

G
N

O
M

E
 li

b
s

O
R

B
it

Figure 11.1
GNOME is composed of a collection of libraries and applications. The libraries are

responsible for interacting between the user and X11 or the operating system. ORBit

is a CORBA implementation that is responsible for interprocess communication.

core contributors of the corresponding module, who then proceeds to eval-
uate it, accept it, and commit it if appropriate. This analysis does not take
these sporadic contributors into account.

In 2002, a total of 280 people contributed to these 62 modules. It was
decided to further narrow the analysis and consider only contributors to
the code base (who will be referred as programmers) and consider only MRs
involving C files (C is the most widely used language in GNOME, and
the number of C files in these modules outnumber the files in the next
language—bash—by approximately 50 times).

A total of 185 programmers were identified. Ninety-eight programmers
contributed 10 or fewer MRs, accounting for slightly less than 3 percent of
the total MRs. The most active programmer (in terms of MRs) accounted
for 7 percent of the total. The top 10 programmers accounted for 46
percent of the total MRs. Even though these numbers need to be correlated
with the actual number of lines of code (LOCS) or defects (bugs) removed
per MR, they indicate that a small number of developers are responsible
for most of the coding of the project. Zawinsky, at one time one of the
core Mozilla contributors, commented on this phenomenon: “If you have
a project that has 5 people who write 80 percent of the code, and 100
people who have contributed bug fixes or a few hundred lines of code here
and there, is that a 105-programmer project?” (as cited in Jones 2002).
When taking into account the division of the project into modules, this
effect seemed more pronounced. Table 11.1 shows the top five program-
mers for some of the most actively modified modules of GNOME.

Module Maintainers
Module maintainers serve as leaders for their module. Lerner and Triole
(2000) identified the main roles of a leader in an OSS project as:

� Providing a vision
� Dividing the project into parts in which individuals can tackle indepen-
dent tasks
� Attracting developers to the project
� Keeping the project together and preventing forking2

GNOME has been able to attract and maintain good, trustworthy main-
tainers in its most important modules. Many of these maintainers are
employees paid by different companies to work on GNOME.

As it was described in German 2002, several companies have been
subsidizing the development of GNOME. Red Hat, Sun Microsystems, and
Ximian are a few of the companies who pay full-time employees to work

Software Engineering Practices in GNOME 215

216 Daniel M. German

Table 11.1
Top five programmers of some the most active modules during 2002

Total number of

Module programmers Programmer Proportion of MRs

glib 24 owen 31%

matthiasc 18%

wilhelmi 10%

timj 10%

tml 9%

gtk+ 48 owen 37%

matthiasc 12%

tml 9%

kristian 8%

jrb 4%

gnome-panel 49 mmclouglin 42%

jirka 12%

padraigo 6%

markmc 6%

gman 6%

ORBit2 11 michael 51%

mmclouglin 28%

murrayc 9%

cactus 5%

scouter 3%

gnumeric 19 jody 34%

mortenw 23%

guelzow 17%

jpekka 12%

jhellan 9%

The first column shows the name of the module, the second shows the total number

of programmers who contributed in that year, and the third shows the userid of the

top five programmers and the proportion of their MRs with respect to the total

during the year. In this table, only MRs that included C files are considered.

on GNOME. Paid employees are usually responsible for the following tasks:
project design and coordination, testing, documentation, and bug fixing.
These tasks are usually less attractive to volunteers. By taking care of them,
the paid employees make sure that the development of GNOME contin-
ues at a steady pace. Some paid employees also take responsibility (as
module maintainers) for some of the critical parts of the project, such as
gtk+ and ORBit (Red Hat), the file manager Nautilus (Eazel, now bankrupt),
and Evolution (Ximian). Paid employees contribute more than just code;
one of the most visible contributions of Sun employees is the proposal of
the GNOME Accessibility Framework a set of guidelines and APIs intended
to make GNOME usable by a vast variety of users, including persons with
disabilities. For example, in Evolution, the top 10 contributors (who
account for almost 70% of its MRs) are all Ximian employees.

Volunteers still play a very important role in the project, and their con-
tributions are everywhere: as maintainers and contributors to modules, as
bug hunters, as documenters, as beta testers, and so on. In particular, there
is one area of GNOME development that continues to be performed mainly
by volunteers: internationalization. The translation of GNOME is done by
small teams of volunteers (who usually speak the language in question and
who are interested in support for their language in GNOME).

As with any other open source project, GNOME is a meritocracy, where
people are valued by the quality (and quantity) of their contributions. Most
of the paid contributors in GNOME were at some point volunteers. Their
commitment to the project got them a job to continue to do what they
did before as a hobby.

Requirement Analysis
Most OSS projects have a requirement’s engineering phase that is very
different from the one that takes place in traditional software projects
(Scacchi 2002). At the beginning of GNOME the only stakeholders were
the developers, who acted as users, investors, coders, testers, and docu-
menters, among other roles. While they had little interest in the com-
mercial success of the project, they wanted to achieve respect from their
peers for their development capabilities and wanted to produce software
that was used by the associated community. In particular, the following
sources of requirements in GNOME can be identified (German 2003):

� Vision. One or several leaders provide a list of requirements that the
system should satisfy. In GNOME, this is epitomized by the following
nonfunctional requirement: “GNOME should be completely free software”

Software Engineering Practices in GNOME 217

(free as defined by the Free Software Foundation; free software gives the
following rights to its users: to run the software for any endeavor; to
inspect its source code, modify it; and to redistribute the original product
or the modified version).
� Reference applications. Many of its components are created with the goal
of replacing similar applications. The GNOME components should have
most of the same, if not the exact same, functionality as these reference
applications. For example, gnumeric uses Microsoft Excel as its reference,
ggv uses gv and kghostview, and Evolution uses Microsoft Outlook and
Lotus Notes.
� Asserted requirements. In a few cases, the requirements for a module or
component are born from a discussion in a mailing list. In some cases, a
requirement emerges from a discussion whose original intention was not
requirement analysis. In other instances (as in the case of Evolution), a
person posts a clear question instigating discussion on the potential
requirements that a tool or library should have. Evolution was born after
several hundred messages were created describing the requirements (func-
tional and nonfunctional) that a good mailer should have before coding
started. More recently, companies such as Sun and IBM have started to
create requirements documents in areas that have been overlooked in the
past. One of them is the GNOME Accessibility Framework.
� A prototype. Many projects start with an artifact as a way to clearly state
some of the requirements needed in the final application. Frequently a
developer proposes a feature, implements it, and presents it to the rest of
the team, which then decides on its value and chooses to accept the pro-
totype or scrap the idea (Hissam et al. 2001). GNOME, for example, started
with a prototype (version 0.1) created by Miguel de Icaza as the starting
point of the project.
� Post hoc requirements. In this case, a feature in the final project is added
to a module because a developer wants that feature and he or she is willing
to do most of the work, from requirements to implementation and testing.
This feature might be unknown to the rest of the development team until
the author provides them with a patch, and a request to add the feature
to the module.

Regardless of the method used, requirements are usually gathered and
prioritize by the maintainer or maintainers of a given module and poten-
tially the Foundation (see next section, “The GNOME Foundation”). A
maintainer has the power to decide which requirements are to be imple-
mented and in which order. The rest of the contributors could provide

218 Daniel M. German

input and apply pressure on the maintainers to shape their decisions (as
in post hoc requirements). A subset of the contributors might not agree
with the maintainer’s view, and might appeal to the Foundation for a deci-
sion on the issue. These differences in opinion could potentially jeopar-
dize the project and create a fork. So far this has not happened within
GNOME. On the other hand, some contributors have left the project after
irreconcilable differences with the rest of the team. For example, Carsten
Haitzler Rasterman, creator of Enlightenment, left GNOME partially due
to differences in opinion with the rest of the project (Haitzler 1999).

The GNOME Foundation
Until 2000, GNOME was run by a “legislature,” in which each of its con-
tributors had a voice and a vote and the developer’s mailing list was the
floor where the issues were discussed. Miguel de Icaza served as the con-
stitutional monarch and supreme court of the project, and had the final
say on any unsolvable disputes. This model did not scale well, and was
complicated when Miguel de Icaza created Helixcode (now Ximian), a com-
mercial venture aimed at continuing the development of GNOME, plan-
ning to generate income by selling services around it.

In August 2000, the GNOME Foundation was instituted. The mandate
of the Foundation is “to further the goal of the GNOME Project: to create
a computing platform for use by the general public that is completely free
software” (The GNOME Foundation 2000). The Foundation fulfills the fol-
lowing four roles (Mueth and Pennington 2002): (1) it provides a democ-
ratic process in which the entire GNOME development community can
have a voice; (2) it is responsible for communicating information about
GNOME to the media and corporations; (3) it will guarantee that the deci-
sions on the future of GNOME are done in an open and transparent way;
(4) it acts as a legal entity that can accept donations and make purchases
to benefit GNOME.

The Foundation comprises four entities: its members (any contributor to
the project can apply for membership); the board of directors (composed
of 11 democratically elected contributors, with at most 4 with the same
corporate affiliation); the advisory board (composed of companies and not-
for-profit organizations); and the executive director. As defined by the
Foundation’s charter, the board of directors is the primary decision-making
body of the GNOME Foundation. The members of the board are supposed
to serve in a personal capacity and not as representatives of their employ-
ers. The Board meets regularly (usually every two weeks, via telephone call)
to discuss the current issues and take decisions in behalf of the entire

Software Engineering Practices in GNOME 219

community. The minutes of each meeting are then published in one of the
GNOME mailing lists (foundation-announce).

Committees
Given the lack of a single organization driving the development accord-
ing to its business goals, OSS projects tend to rely on volunteers to do most
of the administrative tasks associated with that project. In GNOME, com-
mittees are created around tasks that the Foundation identifies as impor-
tant. Contributors then volunteer to be members of these committees.
Examples of committees are the GUADEC team (responsible for the orga-
nization of the GNOME conference), the Web team (responsible for
keeping the Web site up to date), the sysadmin team (responsible for
system administration of the GNOME machines), the release team (respon-
sible for planning and releasing the official GNOME releases), the Foun-
dation membership team (responsible for maintaining the membership list
of the foundation), and several others.

The Release Team
In an OSS project that involves people from different organizations and
with different time commitments to the project, it is not clear how to best
organize and keep track of a release schedule. GNOME faced the same dif-
ficulty. Each individual module might have its own development timeline
and objectives. Planning and coordination of the overall project is done
by the release team. They are responsible for developing, in coordination
with the module maintainers, release schedules for the different modules
and the schedule of the overall project. They also keep track of the devel-
opment of the project and its modules, making sure that everything stays
within schedule. Jeff Waugh, a GNOME Foundation member, summarized
the accomplishment of the team and the skills required in his message of
candidacy to the Board of Directors in 2002:

[The release team] has earned the trust of the GNOME developer community, madly

hand-waved the GNOME 2.0 project back on track, and brought strong cooperation

and “the love” back to the project after a short hiatus. It has required an interest-

ing combination of skills, from cheerleading and Maciej-style police brutality to

subtle diplomacy and “networking.”

Case Study: Evolution

Ximian Evolution evolved within the GNOME project as its groupware
suite based around a mail client. The project started in the beginning of

220 Daniel M. German

1998. At the end of 2000, Ximian (previously called Helixcode, after its
creating company founded by Miguel de Icaza) started operations and
decided to take over the development of Evolution. By the end of 2002,
Evolution was composed of approximately 185,000 lines of code, written
mostly in C. Evolution recently received the 2003 LinuxWorld Open Source
Product Excellence Award in the category of Best Front Office Solution.
One of the objectives of Evolution is to provide a FS product with func-
tionality similar to Microsoft Outlook or Lotus Notes (Perazzoli 2001).

As with most of the GNOME modules, the development environment
includes CVS (used for version control of the files of the project), Bugzilla
(used to track defects), one mailing list for developers and one for users,
and a collection of documentation pages hosted at the Ximian and
GNOME developers’ Web sites.

As is required by the GNOME guidelines, when a contributor commits
a MR, he or she modifies the relevant changelog file to add a description
of the current change. The commit triggers an e-mail message to the
GNOME cvs-commits mailing list, which will include all the details of the
transaction: who made it, when, the files modified, and the log message.
Usually, the changelog and the CVS log messages indicate the nature of
the change, list defect numbers from Bugzilla, and often include a URL
pointing to the change and/or to the defect.

Figure 11.2 displays the number of MRs for each month of the project.
Before Ximian was born, the level of activity was very low. It is also inter-
esting how the number of MRs correlates to the number of releases,
peaking just before version 1.0, at the same time that the frequency of
small releases increased.

Figure 11.3 shows the net number lines of code added to the project
(this number includes comments and empty lines) as a function of time.
It also shows the number of new files added to the project (removed
files are not taken into account) and correlates this information with the
release dates. Some interesting observations can be made. There seems to
be a correlation of added LOCS and new files, and the number of added
LOCS and new files is flat in the month previous to release 1.0, suggesting
a period in which debugging took precedence over new features. After
release 1.0, the development was relatively flat compared to the previous
period. From the evolutionary point of view, it is particularly interesting
to see that during April 2002, more than 5,000 LOCS were removed
from the project. Thanks to the changelog, it was possible to learn that the
LOCS removed were automatically generated, and no longer needed. Being
able to discover the reasons behind changes to a project emphasizes the

Software Engineering Practices in GNOME 221

222 Daniel M. German

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0 98
/0

1
98

/0
1

99
/0

1
99

/0
1

00
/0

1
00

/0
1

01
/0

1
01

/0
1

02
/0

1
02

/0
1

03
/0

1
03

/0
1

Number of MRs

D
at

e

X
im

ia
n

st
ar

ts
 o

pe
ra

tio
ns R

el
ea

se
 0

.0
R

el
ea

se
 1

.0

M
R

s
M

ai
n

R
el

ea
se

s

Fi
g

u
re

 1
1.

2
N

u
m

be
r

of
 M

R
s

p
er

 m
on

th
 i

n
 E

vo
lu

ti
on

.
T

h
er

e
is

 a
 s

ig
n

ifi
ca

n
t

in
cr

ea
se

 i
n

 a
ct

iv
it

y
af

te
r

X
im

ia
n

 s
ta

rt
s

op
er

at
io

n
s,

 a
n

d
 t

h
e

la
rg

es
t

ac
ti

vi
ty

co
in

ci
d

es
 w

it
h

 t
h

e
re

le
as

e
of

 v
er

si
on

 1
.0

.

Software Engineering Practices in GNOME 223

-1
00

00

-5
00

0 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00 98
/0

1
98

/0
1

99
/0

1
99

/0
1

00
/0

1
00

/0
1

01
/0

1
01

/0
1

02
/0

1
02

/0
1

03
/0

1
03

/0
1 0 2

5

 5
0

 7
5

 1
00

 1
25

Number of LOCS added

Number of new files

M
on

th

X
im

ia
n

st
ar

ts
 o

pe
ra

tio
ns

R
el

ea
se

 0
.0

R
el

ea
se

 1
.0

LO
C

S
N

ew
 F

ile
s

pe
r

m
on

th
M

aj
or

 r
el

ea
se

s
M

in
or

 r
el

ea
se

s

Fi
g

u
re

 1
1.

3
G

ro
w

th
 o

f
th

e
so

u
rc

e
co

d
e

of
 E

vo
lu

ti
on

.
T

h
e

le
ft

 a
xi

s
sh

ow
s

th
e

n
u

m
be

r
of

 l
in

es
 a

d
d

ed
 t

o
th

e
p

ro
je

ct
 (

su
m

 o
f

d
el

ta
s

eq
u

al
s

li
n

es
 a

d
d

ed

m
in

u
s

li
n

es
 r

em
ov

ed
),

 w
h

il
e

th
e

ri
gh

t
ax

is
 s

h
ow

s
th

e
n

u
m

be
r

of
 fi

le
s

ad
d

ed
 e

ac
h

 m
on

th
.

importance of the changelogs in the development process. Readers are
invited to read German and Mockus 2003 for a more in-depth analysis of
Evolution.

Conclusions and Future Work

GNOME is a successful and mature FS project with a large number of con-
tributors. It has been able to evolve from a purely volunteer effort into one
that is mainly driven by the industry, while still allowing active participa-
tion by volunteers. Like many other OSS projects, a relatively small number
of core contributors are responsible for most of the project. The source code
is divided into modules, in which the interaction between contributors is
minimized.

GNOME’s development process is open. A large amount of data is
available, tracing its history to the beginning. This data encompasses
mailing lists, version control records, and bug tracking, giving the
researcher the ability to inspect the code at a given moment in the past,
and correlate it to its then-current defects and e-mail messages from its
contributors. Some examples are shown on how this data can be used.
Further and more in-depth empirical studies are needed to understand the
interactions of its contributors, its architectural evolution, and its quality,
for example. A comparative analysis of GNOME and KDE (GNOME’s main
competitor for the Unix desktop) will provide insight on how different
(or similar) these two projects are in their development processes and
architectures.

GNOME, like many other large OSS projects, provides a gold mine of
data ready to be exploited. The resulting studies have the potential to
provide a better understanding of how OSS evolves, identifying some good
practices that could benefit many other OSS projects and, to a lesser extent,
closed source projects too.

Acknowledgments and Disclaimer

This research has been supported by the National Sciences and Engineer-
ing Research Council of Canada and the British Columbia Advanced
Systems Institute. The author would like to thank Joe Feller, Scott Hissam,
and Dan Hoffman for their invaluable comments during the preparation
of this document. Any opinions, findings and conclusions expressed in this
document are those of the author and do not necessarily reflect the views
of the GNOME project or the GNOME Foundation.

224 Daniel M. German

Notes

1. The beginning of the project can be traced back to a license war between the

advocates of FS and those using Qt, at that time a proprietary GUI library for X11,

(a windowing system for the UNIX operating system) which was eventually released

under the GPL and is the basis of the KDE project; it is similar in scope to GNOME.

See Perens 1998 for a discussion of this issue.

2. Sometimes when some of the developers of an open source application disagree,

they decide to create an alternative version of the project that continues its life inde-

pendently from the original project. This new application is known as a fork of the

original one.

Software Engineering Practices in GNOME 225

12 Incremental and Decentralized Integration in FreeBSD

Niels Jørgensen

There is a tremendous sense of satisfaction to the “see bug, fix bug, see bug fix get

incorporated so that the fix helps others” cycle.

—FreeBSD developer

The activity of integration in a software development project may be
defined as an assembly of parts. The activity is crucial, because when
fragments produced by different programmers are integrated into larger
parts, many errors that were previously not visible might emerge. Steve
McConnell, in his book Rapid Development (McConnell 1996, 406) writes
that one of the advantages of doing a daily build of the entire product is
that it helps debugging.

You bring the system to a good known state, and then you keep it there. . . . When

the product is built and tested every day, it’s much easier to pinpoint why the

product is broken on any given day. If the product worked on Day 17 and is broken

on Day 18, something that happened between the builds on Days 17 and 18 broke

the product.

The FreeBSD project’s approach to software integration is highly incre-
mental and decentralized. A stream of bug fixes and new features are
integrated into the project’s development branch, typically numbering
several dozens each day. Integration of a change is the responsibility of
the developer working on the change, in two ways. First, the developer
has the authority to actually add the change on his own decision, without
having to ask someone for approval. Second, the developer is responsible
for conducting integration test of his change, including a trial building
of the full system and correcting the errors this trial reveals. There is
freedom and accountability—changes not properly integrated can be
backed out again, and developers risk having their repository privileges
revoked.

FreeBSD’s delegation of commit authority distinguishes it from projects
where only an individual is in control of the repository, such as Linux, and
this delegation is, in my view, more in the spirit of open source.

An analysis of the pros and cons of FreeBSD’s approach to integration,
as attempted in this chapter, may shed light on a wide range of projects
that in some way follow Raymond’s “release early, release often,” since
integration is a prerequisite of release—that is, at least if there’s anything
new in the release! FreeBSD is also interesting as a case of geographically
distributed software development. In such projects, integration is gener-
ally acknowledged to be an extremely difficult coordination problem; see,
for example, Herbsleb and Grinter 1999.

The remainder of the chapter is organized as follows. The first two sec-
tions introduce FreeBSD and discuss the notions of integration and coor-
dination in software projects. The remainder of the chapter traces the
lifecycle of a change, from work initialization to production release. The
conclusion discusses the impact on coordination that may be attributed to
FreeBSD’s approach to integration.

FreeBSD’s Software and Organization

FreeBSD’s processes for integration and other activities must support devel-
opment of extremely complex software by an organization of distributed
individuals.

The FreeBSD operating system is a descendant of the Unix variant devel-
oped at U.C. Berkeley, dating back to 1977. FreeBSD and its siblings, which
include NetBSD and OpenBSD, were found to run 15 percent of the approx-
imately 1.3 million Internet servers covered in a 1999 survey (Zoebelein
1999).

The project’s source code repository is publicly available at a Web site
(www.freebsd.org), so that any change committed creates a new release
immediately. The repository’s development branch (or trunk) contains
approximately 30,000 files with 5 million lines of code. Approximately
2,000 changes were made to the trunk in October 2002, each typically
modifying only a few lines, in one or a few files.

The project participants are the approximately 300 committers; that is,
developers having repository write access, plus external contributors whose
changes are inserted via committers. More than 1,200 external contribu-
tors have contributed to the project’s own base of sources, and several
thousand users have submitted bug reports. Project leadership is a so-called
“core team” with nine members elected by the committers.

228 Niels Jørgensen

In addition to organizing the development of the operating system
kernel, the project assumes a role analogous to a Linux distributor such as
Red Hat. FreeBSD’s release 5.0 of January 2003 included more than 8,000
ported open source programs for server or workstation use with FreeBSD.
The project writes comprehensive documentation—for example, the
January 2003 release notes for release 5.0 describe several hundred new,
mostly minor, features. Various free services to FreeBSD’s users are pro-
vided—including, most notably, monitoring security—as a basis for issuing
warnings and releases of corrected software.

Part of the data underlying this chapter was collected during a survey in
November 2000 among FreeBSD’s committers (then numbering approxi-
mately 200) that received 72 responses. Subsequently, 10 respondents were
interviewed via mail. The survey questions were typically directed at the
committers’ most recent work. For example, the question “When was the
last time the committer had caused a broken build?” Results were 8 percent
within the last month, 30 percent within the last three months. (Quotations
are from the survey and interviews when no other reference is provided.)

Given the absence of hired developers and a corporate building with man-
agers on the top floor, in what sense is FreeBSD an organization, if at all?

Within the fields of systems development and organization theory, the
concept of organization is quite broad. FreeBSD’s informal organization has
similarities with Baskerville’s and others’ notion of a postmodern organi-
zation. “In an era of organizational globalization and competitive in-
formation systems, we begin to recognize that undue regularity in an
organization and its information system may inhibit adaptation and
survival. . . . The post-modern business organization is . . . fluid, flexible,
adaptive, open. . . .” (Baskerville, Travies, and Truex 1992, 242–243).

FreeBSD’s organization is in some ways also similar to Mintzberg’s
“adhocracy” archetype: a flat organization of specialists forming small
project groups from task to task. Mintzberg considered the adhocracy to
be the most appropriate form for postwar corporate organizations depend-
ing increasingly on employees’ creative work (Mintzberg 1979).

There is, though, also a strong element of continuity in FreeBSD’s orga-
nization. The technological infrastructure has remained essentially the
same from the project’s inception in the beginning of the 1990s; for
example, e-mail for communication, CVS for version control, the C lan-
guage for programming, and the make program for building. The operat-
ing system’s basic design has remained the same for more than a decade.
“FreeBSD’s distinguished roots derive from the latest BSD software releases
from . . . Berkeley. The book The Design and Implementation of the 4.4BSD

Incremental and Decentralized Integration in FreeBSD 229

Operating System . . . thus describes much of FreeBSD’s core functionality in
detail” (McKusick et al. 1996) [4.4BSD was released in 1993].

Although many new features have been incorporated into FreeBSD, there
is a further element of stability in that FreeBSD’s usage as an Internet server
or workstation has been the source of most of the demand for new fea-
tures, then and now.

Mintzberg’s archetypes for organizations that are more traditional than
the adhocracy can be characterized on the basis of how central control is
established: standardization of work processes, worker skills, or work
output, respectively. FreeBSD bears resemblance with Mintzberg’s divi-
sionalized archetype, being split into relatively independent divisions to
whom the organization as a whole says “We don’t care how you work or
what your formal education is, as long as the software you contribute does
not break the build.”

Integration = Assembly of Parts

In this context, integration is assumed to mean all the activities required to
assemble the full system from its parts, as in (Herbsleb and Grinter 1999).

In software engineering textbooks, integration and testing are frequently
viewed as constituting a phase involving a series of steps, from unit testing
to module and subsystem testing to final system testing. Approaches pre-
sented include strategies for selecting the order in which to integrate parts,
such as top-down or bottom-up, referring to the subroutine call structure
among parts. (For example, see Sommerville 2001 and Pressman 2000.) The
notion of integration is viewed in the sequel as independent of lifecycle
context, but with testing as the major activity as in the classical context.
Integration is by no means the act of merely “adding” parts together. This
statement is analogous to coding being more than generation of arbitrary
character sequences. Integration-related activity is viewed as completed
simply when the project or individual considers it completed; for example,
precommit testing is completed when the developer commits.

The canonical error detected during integration is an interdependency
(with another part) error. This type of error ranges from subroutine inter-
faces (for example, syntax of function calls) to execution semantics (for
example, modification of data structures shared with other parts). Some
errors are easily detected—for example, syntax errors caught by the C com-
piler during building, or a crash of a newly built kernel. Other errors are
unveiled only by careful analysis, if found at all prior to production release.

Malone and Crowston define coordination as “management of depen-
dencies,” and suggest dependency analysis as the key to further insight

230 Niels Jørgensen

into coordination-related phenomena. Producer/consumer relationships
and shared resources are among the generic dependencies discussed in
Malone and Crowston 1994.

Producer/consumer dependencies may be of interest for analyses of inte-
gration: If part A defines a subroutine called by part B, there is a pro-
ducer/consumer relationship between the developers of A and B. Notably,
these coordination dependencies involve developers, not software. A devel-
oper might find himself depending on another developer’s knowledge of
specific parts; for instance, to correct (technical) dependency errors. At an
underlying level, developer time is a limited resource, so there may be a
high cost associated with A’s developer having to dive deep into part B to
overcome a given distribution of knowledge.

Also, a shared resource dependency can be identified in FreeBSD involv-
ing the project’s development version. At times, the trunk is overloaded
with premature changes, leading to build breakage. In the spirit of Malone
and Crowston’s interdisciplinary approach, one may compare the human
activity revolving around the trunk with a computer network: both are
limited, shared resources. Network traffic in excess of capacity leads to con-
gestion. Build breakage disrupts work, not just on the “guilty” change, but
numerous other changes occurring in various lifecycle phases that rely on
a well-functioning trunk.

Division of Organization, Division of Work

Work on a change in FreeBSD can be divided into the following types of
activities:

� Pre-integration activities, such as coding and reviewing, where the
project’s “divisions,” the individual developers, have a high degree of
freedom to choose whatever approach they prefer; for example, there is no
requirement that a change is described in a design document.
� Integration activities, such as precommit testing and parallel debugging,
which are controlled more tightly by project rules—for example, the rule
that prior to committing a change, a committer must ensure that the
change does not break the build.

Parnas’s characterization of a module as “a responsibility assignment
rather than a subprogram” (Parnas 1972) pinpoints the tendency that orga-
nizational rather than software architectural criteria determine the way
tasks are decomposed in FreeBSD; namely, into entities small enough to be
worked on by an individual. Sixty-five percent of the respondents said that

Incremental and Decentralized Integration in FreeBSD 231

their last task had been worked on largely by themselves only, with teams
consisting of two and three developers each representing 14 percent.

The basic unit in FreeBSD’s organization is the maintainer. Most source
files are associated with a maintainer, who “owns and is responsible for
that code. This means that he is responsible for fixing bugs and answering
problem reports” (FreeBSD 2003b).

The project strongly encourages users of FreeBSD to submit problem
reports (PRs) to a PR database, which in March 2003 contained more than
3,000 open reports, and is probably the project’s main source of new tasks
to be worked on.

Maintainers are involved in maintenance in the broadest sense: thirty-
eight percent said their last contribution was perfective (a new feature),
29 percent corrective (bug fixing), 14 percent preventive (cleanup), and
10 percent adaptive (a new driver). Typical comments were, “I do all of
the above [the four types of changes]; my last commit just happened to
be a bugfix” and “But if you had asked a different day, I would answer
differently.”

Work on code by nonowners may be initialized for a number of reasons.
First, regardless of the owner’s general obligation to fix bugs, bugs are in
fact frequently fixed by others. Nearly half the developers said that within
the last month there had been a bugfix to “their” code contributed by
someone else. Second, changes may be needed due to dependencies with
files owned by others.

To resolve coordination issues arising from someone wanting to change
code they do not own, the first step is to determine the identity of the
maintainer. Not all source files have a formal maintainer; that is, a person
listed in the makefile for the directory. “In cases where the ‘maintainer-
ship’ of something isn’t clear, you can also look at the CVS logs for the
file(s) in question and see if someone has been working recently or pre-
dominantly in that area” (FreeBSD, 2003a). And then, “Changes . . . shall
be sent to the maintainer for review before being committed” (FreeBSD
2003b).

The approach recommended for settling disputes is to seek consensus:
“[A commit should happen] only once something resembling consensus
has been reached” (FreeBSD 2003a).

Motivation

Enthusiasm jumps when there is a running system.

—Brooks 1987

232 Niels Jørgensen

For work on a change to commence, a maintainer or other developer must
be motivated to work on it, and for the project in the first place.

In FreeBSD, not only is the development version of the system usually
in a working state, but also, the committers have the authority to commit
changes to it directly. This delegation of the authority to integrate appears
to be very important for motivation. As many as 81 percent of the com-
mitters said that they were encouraged a lot by this procedure: “I don’t feel
I am under the whim of a single person,” and “I have submitted code fixes
to other projects and been ignored. That was no fun at all.”

This may supplement motivating factors found in surveys to be impor-
tant for open source developers in general, where improvement of tech-
nical skills and some kind of altruism are among the top (Hars and Ou
2002 and Ghosh et al. 2002).

In describing why they like FreeBSD’s decentralized approach, several
committers pointed to the mere practical issue of reducing work. One said,
“It is frequently easier to make a change to the code base directly than to
explain the change so someone else can do it,” and another commented,
“Big changes I would have probably done anyway. Small changes . . . I
would not have done without commit access.”

A large part of the work committers do for FreeBSD is paid for, although
of course not by the project as such. Twenty-one percent of the FreeBSD
committers said that work on their latest contribution had been fully paid
for, and another 22 percent partially paid for. Consistently, Lakhani and
Wolf (chap. 1, this volume) found that 40 percent of OSS developers are
paid for their work with open source. It is interesting that the decentral-
ized approach to integration is appealing also from the perspective of
FreeBSD’s paid contributors: “I use FreeBSD at work. It is annoying to take
a FreeBSD release and then apply local changes every time. When . . . my
changes . . . are in the main release . . . I can install a standard FreeBSD
release . . . at work and use it right away.”

A complementary advantage of the delegation of commit responsibility
is that the project is relieved from having to establish a central integration
team. McConnell recommends in his analysis of projects that use daily
building that a separate team is set up dedicated to building and integra-
tion. “On most projects, tending the daily build and keeping the smoke
test up to date becomes a big enough task to be an explicit part of
someone’s job. On large projects, it can become a full-time job for more
than one person (McConnell 1996, 408).”

FreeBSD’s core team appoints people to various so-called “coordinator”
tasks, on a voluntary basis of course. A subset of the coordinator

Incremental and Decentralized Integration in FreeBSD 233

assignments can be viewed as falling within tasks of configuration manage-
ment: management of the repository, bug reporting system, and release
management. Another subset deals with communication: coordination of
the mailing lists, the Web site, the documentation effort, the internation-
alization effort, as well as coordinating public relations in general. However,
there is no build coordinator, team, or the like. Indeed, integrating other
people’s changes may be viewed as less rewarding, and assignment to the
task is used in some projects as a penalty (McConnell 1996, 410).

Planning for Incremental Integration

We are completely standing the kernel on its head, and the amount of code changes

is the largest of any FreeBSD kernel project taken thus far.

—FreeBSD’s project manager for SMP

While most changes in FreeBSD are implemented by a single developer,
some changes are implemented by larger “divisions.” An example is
FreeBSD’s subproject for Symmetric Multiprocessing (SMP), to which
approximately 10 developers contributed. SMP is crucial for the exploita-
tion of new cost-effective PCs with multiple processors. An operating
system kernel with SMP is able to allocate different threads to execute
simultaneously on the various processors of such a PC. Specifically, release
5.0 (March 2003) enables SMP for threads running in kernel mode. The 4.x
releases enable SMP only for user-mode threads.

A crucial decision facing large subprojects such as SMP is whether to add
changes incrementally to the development branch, or to insulate devel-
opment on a separate branch and then integrate all at once. In either case,
the subproject is responsible for integration. The latter approach may give
rise to “big bang integration” problems, causing severe delays and some-
times project failure (McConnell 1996, 406).

The FreeBSD decision in favor of the more incremental approach was
influenced by a recent experience in BSD/OS, a sibling operating system:
“They [BSD/OS] went the route of doing the SMP development on a
branch, and the divergence between the trunk and the branch quickly
became unmanageable. . . . To have done this much development on a
branch would have been infeasible” (SMP project manager).

The incremental approach implied that the existing kernel was divided
gradually into two, three, or more distinct areas in which a separate thread
was allowed to run. The SMP project used a classical approach, with a
written plan that defined work breakdown and schedule, some design doc-

234 Niels Jørgensen

umentation, and a project manager, and was launched at a large face-to-
face meeting. This planned approach may have been necessary to main-
tain the development version in a working state during such deep kernel
surgery.

Code

Parnas was right, and I was wrong.

—Brooks 1995

Brooks, in the original 1975 version of The Mythical Man-Month, recom-
mended a process of public coding as a means of quality control via peer
pressure and getting to know the detailed semantics of interfaces. In his
twentieth anniversary edition, he concluded to the contrary, in favor of
Parnas’ concept of information hiding in modules.

Coding in FreeBSD is indeed public: the repository is easily browsable
via the Web, and an automatic message is sent to a public mailing list sum-
marizing every commit.

From a quality assurance point of view, FreeBSD’s public coding enables
monitoring of compliance with the project’s guidelines for coding, which
includes a style guide for the use of the C language and a security guide,
for instance, with rules intended to avoid buffer overflows. It also encour-
ages peer pressure to produce high quality code in general. In response to
the survey statement “Knowing that my contributions may be read by
highly competent developers has encouraged me to improve my coding
skills,” 57 percent answered “Yes, significantly,” and 29 percent said “Yes,
somewhat.” A committer summarized: “Embarrassment is a powerful
thing.”

From the point of view of software integration, the public nature of the
coding process might compensate to some degree for the lack of design
documents; in particular, specifications of interfaces. This compensation
is important, because the division of work among FreeBSD’s developers
appears to reflect the distributed organization (as discussed in the section
“Division of Organization, Division of Work”), rather than a division of
the product into relatively independent modules. Thirty-two percent said
that their last task had required changing related code on which there was
concurrent work (most characterized them as minor changes, though).
According to the SMP project manager, “One of the things that worried
me . . . was that we wouldn’t have enough manpower on the SMP project
to keep up with the changes other developers were making. . . . [T]he SMP

Incremental and Decentralized Integration in FreeBSD 235

changes touch huge amounts of code, so having others working on the
code at the same time is somewhat disruptive.”

To resolve interdependencies with concurrent work, developers watch
the project mailing lists. Typical comments are: “By monitoring the
mailing lists, I can usually stay on top of these things [related code work]”
and “Normally I know who else is in the area,” and “I usually follow the
lists closely and have a good idea of what is going on.”

In response to the statement “Knowing and understanding more about
related, ongoing code work would help me integrate my code into the
system,” 26 percent agreed “Significantly” and 46 percent said “Some-
what”. Interdependency with related coding is a central issue that has not
been fully resolved in FreeBSD’s model.

Review

The project strongly suggests that any change is reviewed before commit.
This is the first occasion where the developer will receive feedback on his
code. Also, all the subsequent phases in the lifecycle of a change as defined
in this chapter might give rise to feedback, and a new lifecycle iteration
beginning with coding.

The Committers’ Guide rule 2 is “Discuss any significant change before
committing” (in web page). “This doesn’t mean that you ask permission
before correcting every obvious syntax error. . . . The very best way of
making sure you’re on the right track is to have your code reviewed by one
or more other committers. . . . When in doubt, ask for review!” (FreeBSD
2003a).

The data indicate that there are frequent reviews in FreeBSD. Code
reviewing is the most widespread. Fifty-seven percent had distributed code
for reviewing (typically via email) within the last month, and a total of 85
percent within the last three months. Almost everybody (86 percent) said
they had actually received feedback the last time they had asked for it,
although this may have required some effort. Some responses were, “I have
to aggressively solicit feedback if I want comments,” and, “If I don’t get
enough feedback, I can resort to directly mailing those committers who
have shown an interest in the area.”

Design reviewing is less frequent: within the last three months, only 26
percent had distributed a design proposal, which was defined in a broad
sense as a description that was not a source file. Although as many as 93
percent said they actually received feedback, a major obstacle to an increase
in review activity appears to be that it is difficult to enlist reviewers. All in

236 Niels Jørgensen

all, there is indication that it would be difficult for the project to intro-
duce mandatory design documents, for instance, describing interfaces or
modifications to interfaces, to aide integration: “I did get feedback . . . of
the type ‘This looks good’ . . . but very little useful feedback,” and, “Getting
solid, constructive comments on design is something like pulling teeth.”

Precommit Testing: Don’t Break the Build

Can people please check things before they commit them? I like a working compile

at least once a week.

—mail message to the developer’s list

In the lifecycle of a change, the committer’s activities to test the change
prior to committing it to the development branch can be viewed as the
first activity contributing directly to the integration of the change.

At the heart of FreeBSD’s approach to integration is the requirement that
committers conduct thorough enough precommit testing so as to ensure,
at a minimum, that the change does not break the build of the project’s
development version. The build is the transformation of source files to exe-
cutable program, which is an automated process. Breaking it means that
the compilation process is aborted, so that an executable program is not
produced. There is an ongoing effort to persuade developers to try to
comply to this requirement, but at the same time the rule requires prag-
matic interpretation.

The main purpose of keeping the build healthy is, in my understanding
of FreeBSD’s process, that the trunk is vital for debugging; boosting morale
is secondary. At one extreme, the debugging purpose would be defeated by
a demand that changes are completely free of errors. The other extreme is
when the build is overloaded with error-prone changes—then it becomes
difficult to identify which newly added changes have caused an error.
Moreover, when the trunk can not be built, other testing than the build-
test itself is halted.

The don’t-break-the-build requirement is stated as rule number 10: “Test
your changes before committing them” in the Committers’ Guide, where
it is explained as follows: “If your changes are to the kernel, make sure you
can still compile [the kernel]. If your changes are anywhere else, make sure
you can still [compile everything but the kernel]” (FreeBSD 2003a).

A major challenge is for the project to strike a balance between two ends:
avoiding broken builds on the development branch (which disrupts the
work of many developers downloading and using it), and limiting to a

Incremental and Decentralized Integration in FreeBSD 237

reasonable level the precommit effort required by the individual developer.
It appears that there is indeed room for relevant exceptions: “I can remem-
ber one instance where I broke the build every 2–3 days for a period of
time; that was necessary [due to the nature of the work]. That was toler-
ated—I didn’t get a single complaint” (interview with FreeBSD committer,
November 2000).

The committer obtains software for precommit testing by checking out
a copy of the most recent version of the project’s development version,
and adding the proposed change. The hardware used is (normally) an Intel-
based PC at the developer’s home or work.

Pragmatic interpretation seems to be particularly called for with respect
to the number of different platforms on which a developer should verify
the build. Due to platform differences, a build may succeed on one and
fail on another. FreeBSD supports a wide range of processor platforms, four
of which (i386, sparc64, PC98, alpha) are so-called tier 1 architectures; that
is, architectures that the project is fully committed to support. Rule
number 10 continues: “If you have a change which also may break another
architecture, be sure and test on all supported architectures” (FreeBSD
2003a).

The project has made a cluster of central build machines available,
including all tier 1 architectures, to which sources can be uploaded and
subjected to a trial build prior to commit. However, uploading to and
building on remote machines is tedious, which can be seen as a cost of the
delegated approach to integration. There are frequent complaints that
committers omit this step.

Developers’ learning about the system as a whole, and their acquisition
of debugging skills, may be a result of the delegated approach to building,
as opposed to the traditional approach of creating a team dedicated to
building and integration.

Correcting a broken build can be highly challenging. This is partly
because the activity is integration-related: a build failure may be due to
dependencies with files not directly involved in the change and so possi-
bly outside of the area of the developer’s primary expertise. Debugging an
operating system kernel is particularly difficult, because when running it
has control of the machine.

Typical comments were: “Debugging build failures . . . has forced me to
learn skills of analysis, makefile construction . . . etc. that I would never be
exposed to otherwise,” and, “I have improved my knowledge about other
parts of the system.”

238 Niels Jørgensen

In response to the statement “I have improved my technical skills by
debugging build failures,” 43 percent chose “Yes, significantly” and 29
percent “Yes, somewhat.”

It is difficult to assess the actual technical competencies of a develop-
ment team, and even more difficult to judge whether they are enhanced
by FreeBSD’s approach to integration. A number of developers indicated
that they were competent before joining FreeBSD. One reported, “The way
you get granted commit privileges is by first making enough code contri-
butions or bug fixes that everyone agrees you should be given direct write
access to the source tree. . . . By and large, most of the committers are better
programmers than people I interview and hire in Silicon Valley.”

Development Release (Commit)

I can develop/commit under my own authority, and possibly be overridden by a

general consensus (although this is rare).

—FreeBSD developer

Development release of a change consists of checking it in to the reposi-
tory by the committer, upon which it becomes available to the other com-
mitters, as well as anyone else who downloads the most recent version of
the “trunk.” It is up to the committer to decide when a change has matured
to an appropriate level, and there is no requirement that he or she provide
proof that the change has been submitted to review.

The repository is revision controlled by the CVS tool. A single command
suffices for uploading the change from the developer’s private machine to the
central repository. Revision control also enables a change to be backed out.

There is a well-defined process for the case in which, upon a commit, it
turns out that an appropriate consensus had not been reached in advance.
“Any disputed change must be backed out . . . if requested by a maintainer.
. . . This may be hard to swallow in times of conflict. . . . If the change turns
out to be the best after all, it can easily be brought back” (FreeBSD 2003a).

Moreover, a consensus between committers working in some area can
be overridden for security reasons: “Security related changes may override
a maintainer’s wishes at the Security Officer’s discretion.”

McConnell recommends that projects using daily builds create a holding
area; that is, a copy of the development version through which all changes
must pass on their way to the (proper) development version, to filter away
changes not properly tested. The purpose is to preserve the development

Incremental and Decentralized Integration in FreeBSD 239

version in a sound state, because developers rely on it for testing their own
code (McConnell 1996, 409). FreeBSD has no such filtering of the stream
of changes flowing into the trunk, and so depends strongly on the com-
mittee’s willingness and ability to release only reasonably tested changes.

Parallel Debugging

We . . . don’t have a formal test phase. Testing tends to be done in the “real world.”

This sounds weird, but it seems to work out okay.

—FreeBSD Developer

Upon commit to the trunk, a change is tested; in a sense, this is consis-
tent with Raymond’s notion of parallel debugging (Raymond 2001). The
trunk is frequently downloaded—for example, 25 percent of the commit-
ters said they had downloaded and built the development version on five
or more days in the preceding week. There may be in principle two dif-
ferent reasons for FreeBSD developers to be working with the most recent
changes, other than for the direct purpose of testing them. First, for pre-
commit testing to be useful, they must use the most recent version. Second,
to benefit from the newest features and bugfixes, advanced users may wish
to use the most recent version for purposes not related to FreeBSD devel-
opment at all.

The first test of a newly committed change is the build test. Regardless
of the rules set up to prevent broken builds on the trunk, the project’s
members are painfully aware that there is a risk for this to happen. Broken
builds will normally be detected by developers, but to ensure detection,
the project runs automated builds twice a day on the four tier 1 architec-
tures—so-called “Tinderbox builds,” the result of which are shown on a
Web page (http://www.freebsd.org/~des).

FreeBSD has no organized effort for systematic testing, such as with pre-
defined testcases. There is also no regression test to which all new versions
of the trunk are subjected. McConnell suggests that checking the daily
build should include a “smoke test” that should be “thorough enough that
if the build passes, you can assume that it is stable enough to be tested
more thoroughly” (McConnell 1996).

It should be noted, though, that there is an element of a smoke test
involved in booting the newly built operating system, and launching stan-
dard programs such as editors and compilers, as carried out on a regular
basis by FreeBSD’s committers.

240 Niels Jørgensen

The community’s use of the development version—once it is in a
working state—produces a significant amount of feedback: some respon-
dents indicated that they receive a constant flow of problem reports; nearly
half the respondents said that, within the last month, someone else had
reported a problem related to “their” code. (Also there is feedback in terms
of actual bugfixes, as mentioned in the earlier section “Division of Orga-
nization, Division of Work.”) Thus there is indication that keeping the
build healthy is valuable for debugging, in addition to the importance for
precommit testing as such. However, there is also indication that the feed-
back generated by parallel debugging mostly pinpoints simple errors: “In
actuality, the bug reports we’ve gotten from people have been of limited
use. The problem is that obvious problems are quickly fixed, usually before
anyone else notices them, and the subtle problems are too ‘unusual’ for
other developers to diagnose.” (FreeBSD project manager)

Production Release

We were spinning our thumbs. . . . It was a really boring month.

— FreeBSD developer, referring to the month preceding the 4.0 release

Production release is the final step in integrating all changed work. A pro-
duction release is a snapshot of a branch in the repository, at a point where
the project considers it to be of sufficiently high quality, following a period
of so-called “stabilization”. This section discusses the process leading to
major production releases (such as version 5.0) that are released at inter-
vals of 18 months or more. In addition, the project creates minor produc-
tion releases (5.1) at intervals of three to four months. Radical changes
such as kernel-enabled SMP are released only as part of major production
releases.

During stabilization prior to a major production release, the trunk is sub-
jected to community testing in the same manner as during ordinary devel-
opment. The difference is that new commits are restricted: only bugfixes
are allowed. The committers retain their write access, but the release engi-
neering team is vested with the authority to reject all changes considered
to be not bugfixes of existing features, and the team’s approval is needed
prior to commit.

Stabilization is also a more controlled phase in the sense that a sched-
ule is published: the code-freeze start date tells committers the latest date
at which they may commit new features, and the un-freeze date when they
can resume new development on the trunk. The stabilization period for

Incremental and Decentralized Integration in FreeBSD 241

5.0 lasted for two months, the first month being less strict with new fea-
tures being accepted on a case-by-case basis. Indeed, while change initial-
ization is somewhat anarchistic, work during the final steps towards
production release is managed rather tightly. For example, the release engi-
neering team defined a set of targets for the release, involving for example
the performance of the new SMP feature (FreeBSD Release Engineering
Team 2003).

The ability to create production releases merely by means of the process
of stabilization is a major advantage of FreeBSD’s approach to integration.
The process is relatively painless—there is no need for a separate phase
dedicated to the integration of distinct parts or branches, because the soft-
ware has already been assembled and is in a working state.

A major disadvantage of “release by stabilization” is the halting of new
development. When the potential represented by developers with an
“itch” to write new features is not used, they may even feel discouraged.
To accommodate, the release engineering team may terminate stabilization
prematurely. This implies branching off at an earlier point of time a new
production branch, where the stabilization effort is insulated from new
development on the trunk. Then commits of new features (to the trunk)
do not risk being released to production prematurely, or introducing errors
that disrupt stabilization. Indeed, production release 5.0 was branched
away from the trunk before it was considered stable. However, there is a
trade-off, because splitting up into branches has a cost. First, bugfixes
found during stabilization must be merged to the development branch.
Second, and more importantly, the project wants everybody to focus on
making an upcoming production release as stable as possible. Splitting up
into branches is splitting the community’s debugging effort, which is the
crucial shared resource, rather than the trunk as such.

Conclusion

Respect other committers. . . . Being able to work together long-term is this project’s

greatest asset, one far more important than any set of changes to the code.

—FreeBSD 2003a, the Committer Guide’s description of rule 1

FreeBSD accomplishes coordination across a project that is geographically
widely distributed. FreeBSD’s incremental and decentralized approach to
integration may be a key factor underlying this achievement: it may
enhance developer motivation and enable a relatively painless process
for creating production releases by maturing the project’s development

242 Niels Jørgensen

version. The project avoids allocation of scarce developer resources to ded-
icated build or integration teams, with the perhaps not-so-interesting task
of integrating other people’s changes or drifted-apart branches.

The project’s development branch is something of a melting pot. There
is no coffee machine at which FreeBSD’s developers can meet, but the
development branch is the place where work output becomes visible and
gets integrated, and where the key project rule—don’t break the build—is
applied and redefined.

A disadvantage of FreeBSD’s approach to integration is the risk of over-
loading the trunk with interdependent changes, when too many changes
are committed too early. In a sense there is a limited capacity to the trunk,
and one that can not be overcome simply by branching, since the under-
lying scarce resource is the community effort of parallel debugging.

FreeBSD’s decentralized approach seems to contradict hypotheses that
hierarchy is a precondition to success in open source development. For
example, Raymond stressed the need for a strong project leader, albeit one
who treats contributors with respect (Raymond 2001). Healy and Schuss-
man studied a number of apparently unsuccessful open source projects,
and asserted that the importance of hierarchical organization is systemat-
ically underplayed in analyses of open source (Healy and Schussman 2003).
The author of this chapter would stress the need for mature processes
rather than hierarchy. FreeBSD is a promising example of a decentralized
organization held together by a project culture of discussion and re-
interpretation of rules and guidelines.

Incremental and Decentralized Integration in FreeBSD 243

13 Adopting Open Source Software Engineering (OSSE)

Practices by Adopting OSSE Tools

Jason Robbins

The open source movement created a set of software engineering tools with
features that fit the characteristics of open source development processes.
To a large extent, the open source culture and methodology are conveyed
to new developers via the toolset itself and the demonstrated usage of these
tools on existing projects. The rapid and wide adoption of open source
tools stands in stark contrast to the difficulties encountered in adopting
traditional Computer-Aided Software Engineering (CASE) tools. This
chapter explores the characteristics that make these tools adoptable and
discusses how adopting them may influence software development
processes.

One ongoing challenge facing the software engineering profession is the
need for average practitioners to adopt powerful software engineering tools
and methods. Starting with the emergence of software engineering as a
field of research, increasingly advanced tools have been developed to
address the difficulties of software development. Often these tools
addressed accidental difficulties of development, but some have been
aimed at essential difficulties such as management of complexity, com-
munication, visibility, and changeability (Brooks 1987). Later, in the
1990’s, the emphasis shifted from individual tools toward the development
process in which the tools were used. The software process movement pro-
duced good results for several leading organizations, but it did not have
much impact on average practitioners.

Why has adoption of CASE tools been limited? Often the reason has
been that they did not fit the day-to-day needs of the developers who were
expected to use them: they were difficult to use, expensive, and special
purpose. The fact that they were expensive and licensed on a per-seat basis
caused many organizations to only buy a few seats, thus preventing other
members of the development team from accessing the tools and artifacts
only available through these tools. One study of CASE tool adoption found

that adoption correlates negatively with end user choice, and concludes
that successful introduction of CASE tools must be a top-down decision
from upper management (Iivari 1996). The result of this approach has
repeatedly been “shelfware”: software tools that are purchased but not
used.

Why have advanced methodologies not been widely adopted? Software
process improvement efforts built around capability maturity model
(CMM) or ISO-9000 requirements have required resources normally only
found in larger organizations: a software process improvement group, time
for training, outside consultants, and the willingness to add overhead to
the development process in exchange for risk management. Top-down
process improvement initiatives have often resulted in a different kind of
shelfware, where thick binders describing the organization’s software
development method (SDM) go unused. Developers who attempt to follow
the SDM may find that it does not match the process assumptions embed-
ded in current tools. Smaller organizations and projects on shorter devel-
opment cycles have often opted to continue with their current processes
or adopt a few practices of lightweight methods such as extreme pro-
gramming in a bottom-up manner (Beck 2000).

In contrast, open source projects are rapidly adopting common expec-
tations for software engineering tool support, and those expectations are
increasing. Just four years ago, the normal set of tools for an open source
project consisted of a mailing list, a bugs text file, an install text file, and
a CVS server. Now, open source projects are commonly using tools for issue
tracking, code generation, automated testing, documentation generation,
and packaging. Some open source projects have also adopted object-
oriented design and static analysis tools. The feature sets of these tools are
aimed at some key practices of the open source methodology, and in adopt-
ing the tools, software developers are predisposed to also adopt those open
source practices.

Exploring and encouraging development and adoption of open source
software engineering tools has been the goal of the http://tigris.org Web
site for the past three years. The site hosts open source projects that are
developing software engineering tools and content of professional interest
to practicing software engineers. Tigris.org also hosts student projects on
any topic, and a reading group for software engineering research papers.
The name “Tigris” can be interpreted as a reference to the Fertile Crescent
between the Tigris and Euphrates rivers. The reference is based on the
hypothesis that an agrarian civilization would and did arise first in the
location best suited for it. In other words, the environment helps define

246 Jason Robbins

the society, and more specifically, the tools help define the method. This
is similar to McLuhan’s proposition that “the medium is the message”
(McLuhan 1994).

Some Practices of OSS and OSSE

The open source movement is broad and diverse. Though it is difficult to
make generalizations, there are several common practices that can be
found in many open source software projects. These practices leave
their mark on the software produced. In particular, the most widely
adopted open source software engineering tools are the result of these
practices, and they embody support for the practices, which further rein-
forces the practices.

Tools and Community

Provide Universal, Immediate access to All Project Artifacts The heart of
the open source method is the accessibility of the program source code to
all project participants. Beyond the source code itself, open source projects
tend to allow direct access to all software development artifacts such as
requirements, design, open issues, rationale, development team responsi-
bilities, and schedules. Tools to effectively access this information form the
centerpiece of the open source development infrastructure: projects rou-
tinely make all artifacts available in real time to all participants worldwide
over the Internet. Both clients and server components of these tools are
available on a wide range of platforms at zero cost. This means that all par-
ticipants can base their work on up-to-date information. The availability
of development information is also part of how open source projects attract
participants and encourage them to contribute.

In contrast, traditional software engineering efforts have certainly made
progress in this area, but it is still common to find projects that rely
on printed binders of requirements that rapidly become outdated, use
LAN-based collaboration tools that do not scale well to multisite projects,
purchase tool licenses for only a subset of the overall product team, and
build silos of intellectual property that limit access by other members
of the same organization who could contribute. While e-mail and other
electronic communications are widely used in closed source projects, the
information in these systems is incomplete because some communication
happens face-to-face or via documents that are never placed in a shared
repository.

Adopting OSSE Practices by Adopting OSSE Tools 247

Staff Projects with Motivated Volunteers Open source projects typically
have no dedicated staff. Instead, work is done by self-selected developers
who volunteer their contributions. Self-selection is most likely to occur
when the developers are already familiar with the application domain and
development technologies. Developers allocate their own time to tasks that
they select. This means that every feature is validated by at least one person
who strongly desired it. Motivation for open source development comes
in many forms, including one’s own need for particular software, the joy
of construction and expression, altruism, the need for external validation
of one’s own ideas and abilities, the ideology of free software as a form of
freedom, and even social and financial rewards. The other side of joy as a
motivation is that unlikable jobs tend to go undone, unless they are auto-
mated. While some high-profile open source projects have ample poten-
tial contributors, a much larger number of average open source projects
rely on the part-time efforts of only a few core members.

In contrast, traditional software engineering projects are staffed and
funded. Often organizations emphasize continuity and stability as ways to
keep costs down over the life of a product line. Achieving staff continuity
in a changing business and technology environment demands that train-
ing be part of the critical path for many projects. Traditional software engi-
neers are motivated by many of the same factors found in open source, as
well as professionalism and direct financial incentives. Resources are always
limited, even in well-funded commercial projects, and it is up to manage-
ment to determine how those resources are allocated.

Work in Communities that Accumulate Software Assets and Standardize
Practices Collaborative development environments (CDEs) such as
SourceForge1 and SourceCast2 now host large development communities
that would have previously been fragmented across isolated projects
hosted on custom infrastructure. This is one of the most important shifts
in open source development. It was partly inspired by the Mozilla.org
toolset, which itself descended from a more traditional software engineer-
ing environment. These large development communities reduce the effort
needed to start a new project by providing a complete, standard toolset.
They warehouse reusable components, provide access to the developers
that support them, and make existing projects in the communities acces-
sible as demonstrations of how to use those tools and components. Pref-
erence for standards and conventions is particularly strong in the selection
of tools in open source projects. Increasingly, it is the development com-
munity as a whole that has made decisions about the set of tools in the

248 Jason Robbins

CDE, and individual projects accept the expectation of using what is pro-
vided. In particular, a great increase in the reliance on issue-tracking tools
by open source projects has resulted from the availability and demon-
strated usage of issue trackers in CDEs.

Many larger commercial software development organizations do have
organization-wide standards and site licenses for fundamental tools such
as version control. However, it is still common for projects to acquire
licenses for specific tools using a project-specific budget with little stan-
dardization across projects. Software process improvement (SPI) teams
have attempted to standardize practices through training, mandates, and
audits. However, they have rarely been able to leverage the visibility of best
practices across projects. Peer visibility is an important key to making a
methodology become ingrained in a development culture. Likewise, pro-
viding a repository of reusable components is not, in itself, enough to drive
reuse: developers look for evidence that others are successfully reusing a
given component.

Open Systems Design

Follow Standards to Validate the Project, Scope Decision Making, and
Enable Reuse A preference for following standards is deeply ingrained in
the open source culture. The need for pre-1.0 validation of the project and
the lack of formal requirements generation in open source projects tends
to encourage reliance on externally defined standards and conventions.
Deviation from standards is discouraged because of the difficulty of spec-
ifying an alternative with the same level of formality and agreement
among contributors. Standards also define interfaces that give choice to
users and support diversity of usage.

Standards and open systems are also emphasized in traditional develop-
ment projects. The current move to web services is one important example
of that. However, the marketplace often demands that new products dif-
ferentiate themselves from existing offerings by going beyond current
standards. At the same time, pressure to maximize returns may justify a
decision to implement only part of a standard and then move on to other
revenue-generating functionality.

Practice Reuse and Reusability to Manage Project Scope Open source pro-
jects generally start with very limited resources, often only one or two part-
time developers. Projects that start with significant reuse tend to be more
successful, because they can demonstrate results sooner, they focus

Adopting OSSE Practices by Adopting OSSE Tools 249

discussions on the project’s value-added, and they resonate with the cul-
tural preference for reuse. Even if a project had implemented its own code
for a given function, peer review often favors the elimination of that code,
if a reusable component can replace it. Reusable components can come
from projects that explicitly seek to create components for use by devel-
opers, or they can spin out of other projects that seek to produce end user
products. In fact, spinning out a reusable component is encouraged,
because it fits the cultural preference for reuse, and often gives a mid-level
developer the social reward of becoming a project leader.

The return on building reusable components can be hard to estimate in
advance. So the justification for reusable components in traditional soft-
ware development may be unclear, even in organizations with reuse ini-
tiatives. In contrast, the motivations for open source participation apply
to the development of components as much or more than they do to the
development of end user products. Traditional development teams are
responsible for maximizing returns on their current project; the cost of
providing ongoing support for reusable components can be at odds with
that goal. In contrast, open source components can achieve a broad pop-
ulation of users that can support one another.

Support Diversity of Usage and Encourage Plurality of Authorship Open
source products are often cross-platform and internationalized from the
start. They usually offer a wide range of configuration options that address
diverse use cases. Any contributor is welcome to submit a new feature to
“scratch an itch” (Raymond 2001). Such willingness to add functionality
can lead to feature creep and a loss of conceptual integrity. This sort of
occurrence can make it harder to meet predefined deadlines, but it broad-
ens the appeal of the product, because more potential users get their own
win conditions satisfied. Since users are responsible for supporting each
other, the increase in the user population can provide the increased effort
needed to support the new features. Peer review, standards, and limited
resources can help limit undirected feature creep.

While traditional development tools may have great depth of function-
ality, they tend to have fewer options and more platform restrictions than
their open source counterparts, making it harder for large organizations to
select a single tool for all development efforts across the enterprise. Com-
mercial development projects manage a set of product features in an effort
to maximize returns while keeping support costs under control. Likewise,
management assigns specific tasks to specific developers and holds them
accountable for those tasks, usually to the exclusion of serendipitous con-

250 Jason Robbins

tributions. Even if an outside contributor submitted a new piece of func-
tionality, the cost of providing technical support for that functionality may
still prevent its integration.

Planning and Execution

Release Early, Release Often Open source projects are not subject to the
economic concerns or contractual agreements that turn releases into major
events in traditional development. For example, there are usually no CDs
to burn and no paid advertising campaigns. That reduced overhead allows
them to release as early and often as the developers can manage. A
hierarchy of release types is used to set user expectations: “stable” releases
may happen at about the same rate as releases in traditional development,
but “nightly” releases are commonly made available, and public “deve-
lopment” releases may happen very soon after the project kickoff and every
few weeks thereafter. In fact, open source projects need to release pre-1.0
versions in order to attract the volunteer staff needed to reach 1.0. But,
a rush toward the first release often means that traditional upstream
activities such as requirements writing must be done later, usually in-
crementally. Reacting to the feedback provided on early releases is key to
requirement-gathering and risk-management practices in open source.

In contrast, a traditional waterfall development model invests heavily in
upstream activities at the start of the project in an attempt to tightly coor-
dinate work and minimize the number of releases. Many organizations
have adopted iterative development methodologies, for example, extreme
programming (Beck 2000) or “synch and stabilize” (Cusumano and Selby
1995). However, they still must achieve enough functionality to have a
marketable 1.0 release. And concerns about exposing competitive infor-
mation and the overhead of integration, training, marketing, and support
create a tendency toward fewer, more significant releases.

Place Peer Review in the Critical Path Feedback from users and develop-
ers is one of the practices most central to the open source method. In many
open source projects, only a core group of developers can commit changes
to the version control system; other contributors must submit a patch that
can be applied only after review and discussion by the core developers.
Also, it is common for open source projects to use automated email noti-
fications to prompt broad peer review of each CVS commit. Peer review
has also been shown to be one of the most effective ways to eliminate
defects in code, regardless of methodology (Wiegers 2002). The claim that

Adopting OSSE Practices by Adopting OSSE Tools 251

“given enough eyeballs, all bugs are shallow” (Raymond 2001, 41) under-
scores the value of peer review, and it has proven effective on some high
profile open source projects. However, unaided peer review by a few
average developers, who are for the most part the same developers who
wrote the code in the first place, is not a very reliable or efficient practice
for achieving high quality.

Although the value of peer reviews is widely acknowledged in traditional
software engineering, it is unlikely to be placed in the critical path unless
the project is developing a safety-critical system. Traditional peer reviews
require time for individual study of the code followed by a face-to-face
review meeting. These activities must be planned and scheduled, in con-
trast to the continuous and serendipitous nature of open source peer
review.

Some Common OSSE Tools

This section reviews several open source software engineering tools with
respect to the practices defined previously. Editors, compilers, and debug-
gers have not been included; instead, the focus is on tools that have more
impact on collaborative development. Most of these tools are already
widely used, while a few are not yet widely used but are set to rapidly
expand in usage.

Version Control

CVS, WinCVS, MacCVS, TortoiseCVS, CVSWeb, and ViewCVS The Con-
current Versions System (CVS) is the most widely used version control
system in open source projects. Its features include a central server that
always contains the latest versions and makes them accessible to users over
the Internet; support for disconnected use (i.e., users can do some work
while not connected to the Internet); conflict resolution via merging rather
than locking to reduce the need for centralized coordination among devel-
opers; simple commands for checking in and out that lower barriers to
casual usage; cross-platform clients and servers; and, a vast array of options
for power users. It is common for CVS to be configured to send e-mail noti-
fications of commits to project members to prompt peer review. WinCVS,
MacCVS, and TortoiseCVS are just three of many free clients that give users
a choice of platform and user interface style. CVS clients are also built into
many IDEs and design tools. CVSWeb and ViewCVS are Web-based tools
for browsing a CVS repository.

252 Jason Robbins

Adoption of CVS among open source projects is near total, and the
concepts embodied in CVS have clearly influenced the open source
methodology. CVS can easily provide universal access to users of many
platforms and many native languages at locations around the globe. The
practice of volunteer staffing takes advantage of CVS’s straightforward
interface for basic functions, support for anonymous and read-only
access, patch creation for later submission, and avoidance of file locking.
CVS has been demonstrated to scale up to large communities, despite
some shortcomings in that regard. The protocol used between client and
server is not a standard; however, CVS clients have followed the user
interface standards of each platform. In fact, the command-line syntax of
CVS follows conventions established by the earlier RCS system. A separa-
tion of policy from capability allows a range of branching and release
strategies that fit the needs of diverse projects. Frequent releases and hier-
archies of release quality expectations are facilitated by CVS’s ability to
maintain multiple branches of development. Peer review is enabled by easy
access to the repository, and is encouraged by email notifications of
changes.

Subversion, RapidSVN, TortoiseSVN, and ViewCVS Subversion is the
leading successor to CVS. Its features include essentially all of CVS’s fea-
tures, with several significant enhancements: it has a cleaner, more reli-
able, and more scalable implementation; it is based on the existing
WebDAV standard; it replaces CVS’s concepts of branches and tags with
simple naming conventions; and, it has stronger support for disconnected
use. RapidSVN and TortoiseSVN are two of several available Subversion
clients. ViewCVS can browse Subversion repositories as well as CVS repos-
itories. Also, Subversion repositories can be browsed with any standard
Web browser and many other applications, due to the use of the standard
WebDAV protocol.

It will take time for Subversion to be widely adopted by open source pro-
jects, but interest has already been very high and many early uses have
been documented. Subversion improves on CVS’s support for universal
access by following standards that increase scalability and ease integration.
Diverse users already have a choice of several Subversion clients; however,
there are fewer than those of CVS. Subversion’s simplification of branch-
ing lowers the learning curve for potential volunteers and supports a diver-
sity of usage. Support for frequent releases and peer review in Subversion
is similar to that of CVS.

Adopting OSSE Practices by Adopting OSSE Tools 253

Issue Tracking and Technical Support

Bugzilla Bugzilla was developed to fit the needs of the Mozilla open
source project. Its features include: an “unconfirmed” defect report state
needed for casual reporters who are more likely to enter invalid issues; a
“whine” feature to remind developers of issues assigned to them; and a
Web-based interface that makes the tool cross-platform, universally acces-
sible, and that lowers barriers to casual use.

Bugzilla has been widely adopted and deeply integrated into the open
source community over the past few years. The Bugzilla database on
Mozilla.org has grown past 200,000 issues, and a dozen other large open
source projects each host tens of thousands of issues. The whine feature
helps address the lack of traditional management incentives when projects
are staffed by volunteers. Bugzilla has been demonstrated to scale up to
large communities, and the organized history of issues contained in a
community’s issue database serve to demonstrate the methodology prac-
ticed by that community. When developers evaluate the reusability of a
component, they often check some of the issues in the project issue
tracker and look for signs of activity. Conversely, when developers feel
that they have no recourse when defects are found in a reusable com-
ponent, they are likely to cease reusing it. There is a remarkable diversity
of usage demonstrated in the issues of large projects: developers track
defects, users request support, coding tasks are assigned to resources,
patches are submitted for review, and some enhancements are debated at
length. Frequent releases and peer review of project status are enabled by
Bugzilla’ clear reporting of the number of pending issues for an upcoming
release.

Scarab The Scarab project seeks to establish a new foundation for issue-
tracking systems that can gracefully evolve to fit many needs over time.
Scarab covers the same basic features as does Bugzilla, but adds support for
issue de-duplication on entry to defend against duplicates entered by
casual participants; an XML issue exchange format; internationalization;
and highly customizable issue types, attributes, and reports.

Interest and participation in the Scarab project has been strong, and the
tool is rapidly becoming ready for broader adoption. Scarab’s support for
internationalization and XML match the open source practices of univer-
sal access and preference for standards and interoperability. Scarab’s biggest
win comes from its customizability, which allows the definition of new
issue types to address diverse user needs.

254 Jason Robbins

Technical Discussions and Rationale

Mailing Lists Mailing lists provide a key advantage over direct e-mail, in
that they typically capture messages in Web-accessible archives that serve
as a repository for design and implementation rationale, as well as end user
support information. Some of the most common usages of mailing lists
include: question and answer sessions among both end users and deve-
lopers, proposals for changes and enhancements, announcements of new
releases, and voting on key decisions. Voting is often done using the con-
vention that a message starting with the text “+1” is a vote in favor of a
proposal, a message with “+0” or “-0” is an abstention with a comment,
and a message with “-1” is a veto, which must include a thoughtful
justification. While English is the most commonly used natural language
for open source development, mailing lists in other languages are also
used.

Open source developers adopted mailing lists early, and now they are
used on very nearly every project. Since mailing lists use e-mail, they are
standards-based, cross-platform, and accessible to casual users. Also, since
the e-mail messages are free-format text, this single tool can serve a very
diverse range of use cases. It is interesting to note that the preference is for
plain-text messages: HTML-formatted e-mail messages and integration of
e-mail with other collaboration features have not been widely adopted.
Project mailing list archives do help set the tone of development commu-
nities, but the flexibility of mailing lists allows so many uses that new
potential developers might not recognize many of the patterns. Peer review
usually happens via mailing lists, because CVS’s change notifications use
e-mail, and because e-mail is the normal medium for discussions that do
not relate to specific issues in the issue database.

Project Web Sites Open source predates the Web, so early open source
projects relied mainly on mailing lists, file transfer protocol (FTP), and
later, CVS. Open source projects started building and using Web sites soon
after the introduction of the Web. In fact, several key open source projects
such as Apache are responsible for significant portions of today’s Web
infrastructure. A typical open source Web site includes a description of
the project, a users’ guide, developer documentation, the names of the
founding members and core developers, the license being used, and
guidelines for participation. Open source Web sites also host the col-
laborative development tools used on the project. Users can find related
projects by following links from one individual project to another, but

Adopting OSSE Practices by Adopting OSSE Tools 255

increasingly, projects are hosted at larger community sites that categorize
related projects.

Project Web sites have been universally adopted by recent open source
projects. Web sites provide universal access to even the most casual users.
Web page design can adjust to suit a wide range of diverse uses and pre-
ferences. The temptation to build an unusual Web site for a particular
project is sometimes in conflict with the goals of the larger community
site. Community-wide style sheets and page design guidelines reduce this
conflict, as do tools like Maven and SourceCast that define elements of a
standard appearance for each project’s Web content. Internet search
engines enable users to find open source products or reusable components.
The Web supports the practice of issuing frequent releases simply because
the project’s home page defines a stable location where users can return
to look for updates. Also, Internet downloads support frequent reuse by
eliminating the need for printed manuals, CDs, packaging, and shipping.

HOWTOs, FAQs, and FAQ-O-Matic HOWTO documents are goal-oriented
articles that guide users through the steps needed to accomplish a specific
task. Lists of frequently asked questions (FAQs) help to mitigate two of the
main problems of mailing lists: the difficulty of summarizing the discus-
sion that has gone before, and the wasted effort of periodically revisiting
the same topics as new participants join the project. FAQ-O-Matic and
similar tools aim to reduce the unlikable effort of maintaining the FAQ.

FAQs and HOWTOs are widely used, while FAQ-O-Matic is not nearly so
widely used. This may be the case because simple HTML documents serve
the purpose and allow more flexibility. FAQs and HOWTOs are universally
accessible over the Internet, and tend to be understandable by casual users
because of their simple, goal-oriented format. Developer FAQs and
HOWTOs can help potential volunteers come up to speed on the proce-
dures needed to make specific enhancements. When FAQ-O-Matic is used,
it helps reduce the tedious task of maintaining a FAQ, and makes it easier
for users to suggest that new items be added. Many HOWTO documents
conform to a standard SGML document type and are transformed into
viewable formats by using DocBook or other tools.

Wiki, TWiki, and SubWiki A wiki is a collaborative page-editing tool in
which users may add or edit pages directly through their web browser.
Wikis use a simple and secure markup language instead of HTML. For
example, a word written like “NameOfPage” would automatically link to
another page in the wiki system. Wikis can be more secure than systems

256 Jason Robbins

that allow entry of HTML, because there is no way for users to enter poten-
tially dangerous JavaScript or to enter invalid HTML markup that could
prevent the overall page from rendering in a browser. TWiki is a popular
wiki-engine with support for page histories and access controls. SubWiki
is a new wiki-engine that stores page content in Subversion.

Wiki-engines are used in many open source projects, but by no means
in a large fraction of all open source projects. Wiki content is universally
accessible over the Web. Furthermore, volunteers are able to make changes
to the content without the need for any client-side software, and they are
sometimes even free to do so without any explicit permission. Wiki sites
do have a sense of community, but Wiki content tends to serve as an
example of how to loosely organize pages of documentation, rather than
a demonstration of any particular development practice.

Build Systems

Make, Automake, and Autoconf The Unix “make” command is a stan-
dard tool to automate the compilation of source code trees. It is one
example of using automation to reduce barriers to casual contributors. And
there are several conventions that make it easier for casual contributors to
deal with different projects. Automake and Autoconf support portability
by automatically generating makefiles for a particular Unix environment.

These tools are widely used; in fact, if it were not for Ant (see the
following section) the use of make would still be universal. While make-
files are not particularly easy to write or maintain, they are easy for users
and volunteer developers to quickly learn to run. Makefiles are based on a
loose standard that dates back to the early days of Unix. Developers who
intend to reuse a component can safely assume that it has a makefile that
includes conventional make targets like “make clean” and “make install.”
Makefiles are essentially programs themselves, so they can be made
arbitrarily complex to support various diverse use cases. For example, in
addition to compiling code, makefiles can be used to run regression tests.
Running regression tests frequently is one key to the practice of frequent
releases.

Ant Ant is a Java replacement for make that uses XML build files instead
of makefiles. Each build file describes the steps to be carried out to build
each target. Each step invokes a predefined task. Ant tasks each perform a
larger amount of work than would a single command in a makefile. This
process can reduce the tedium of managing complex makefiles, increase

Adopting OSSE Practices by Adopting OSSE Tools 257

consistency across projects, and ease peer review. In fact, many projects
seem to use build files that borrow heavily from other projects or exam-
ples in the Ant documentation. Many popular IDEs now include support
for Ant.

Ant is being adopted rapidly by both open source and traditional soft-
ware development projects that use Java. Ant is accessible to developers on
all platforms, regardless of whether they prefer the command-line or an
IDE. Ant build files tend to be more standard, simpler, and thus more acces-
sible to potential volunteers. Since Ant build files are written in XML,
developers are already familiar with the syntax, and tools to edit or oth-
erwise process those files can reuse standard XML libraries. As Ant adop-
tion increases, developers evaluating a reusable Java component can
increasingly assume that Ant will be used and that conventional targets
will be included. As with make, Ant can be used for regression testing to
support the practice of delivering frequent releases.

Tinderbox, Gump, CruiseControl, XenoFarm, and Maven Nightly build
tools automatically compile a project’s source code and produce a report
of any errors. In addition to finding compilation errors, these tools can
build any make or Ant target to accomplish other tasks, such as regression
tests, documentation generation, or static source code analysis. These tools
can quickly catch errors that might not have been noticed by individual
developers working on their own changes. Some nightly build tools auto-
matically identify and notify the developer or developers who are respon-
sible for breaking the build, so that corrections can be made quickly.
Tinderbox and XenoFarm can also be used as “build farms” that test the
building and running of the product on an array of different machines and
operating systems.

Nightly build tools have been used within large organized communities
such as Mozilla.org and Jakarta.apache.org, as well as by independent pro-
jects. These tools help provide universal access to certain important aspects
of the project’s current status: that is, does the source code compile and
pass unit tests? Volunteers may be more attracted to projects with clear
indications of progress than they would otherwise. And the limited efforts
of volunteers need not be spent on manually regenerating API documen-
tation or running tests. Component reuse is encouraged when developers
can easily evaluate the status of development. Organized open source
development communities use nightly build tools to help manage depen-
dencies between interdependent projects. Frequent releases are facilitated

258 Jason Robbins

by nightly build automation that quickly detects regressions and notifies
the responsible developers.

Design and Code Generation

ArgoUML and Dia ArgoUML is a pure-Java UML design tool. ArgoUML
closely follows the UML standard, and associated standards for model
interchange and diagram representation. In addition to being cross-plat-
form and standards based, it emphasizes ease of use and actively helps train
casual users in UML usage. ArgoUML’s design critics catch design errors in
much the same way that static analysis tools catch errors in source code.
ArgoUML is one of very few tools to support the Object Constraint Lan-
guage (OCL), which allows designers to add logical constraints that refine
the meaning of their design models. Dia is a more generic drawing tool,
but it has a UML mode that can also generate source code.

UML modeling tools have experienced only limited adoption among
open source projects, possibly because of the emphasis on source code as
the central development artifact. Tools such as ArgoUML that are them-
selves open source and cross-platform provide universal access to design
models, because any potential volunteer is able to view and edit the model.
Emphasis on standards in ArgoUML has allowed for model interchange
with other tools and the development of several plug-ins that address
diverse use cases. If design tools were more widely used in open source
projects, UML models would provide substantial support for under-
standing components prior to reuse, for peer reviews at the design level,
and for the sharing of design patterns and guidelines within development
communities.

Torque, Castor, and Hibernate Torque is a Java tool that generates
SQL and Java code to build and access a database defined by an XML
specification of a data model. It is cross-platform, customizable, and
standards-based. Torque’s code generation is customizable because it is
template-based. Also, a library of templates has been developed to address
incompatibilities between SQL databases. Castor addresses the same
goals, but adds support for persistence to XML files and parallels relevant
Java data access standards. Hibernate emphasizes ease of use and rapid
development cycles by using reflection rather than code generation.

Open source developers have adopted database code generation tools at
about the same rate that traditional developers have. Projects that have

Adopting OSSE Practices by Adopting OSSE Tools 259

adopted them are able to produce products that are themselves portable
to various databases. Code generation tools can increase the effectiveness
of volunteer developers and enable more frequent releases by reducing the
unlikable tasks of writing repetitive code by hand, and debugging code that
is not part of the project’s value-add. Code generation is itself a form of
reuse in which knowledge about a particular aspect of implementation is
discussed by community members and then codified in the rules and tem-
plates of the generator. Individual developers may then customize these
rules and templates to fit any unusual needs. Peer review of schema spec-
ifications can be easier than reviewing database access code.

XDoclet, vDoclet, JUnitDoclet, and Doxygen These code generation tools
build on the code commenting conventions used by Javadoc to generate
API documentation. Doxygen works with C, C++, IDL, PHP, and C#, in
addition to Java. XDoclet, vDoclet, and JUnitDoclet can be used to gener-
ate additional code rather than documentation. For example, a developer
could easily generate stubs for unit tests of every public method of a class.
Another use is the generation of configuration files for Web services, appli-
cation servers, or persistence libraries. The advantage of using comments
in code rather than an independent specification file is that the existing
structure of the code is leveraged to provide a context for code generation
parameters.

Like the code generators listed previously, doclet-style generators are a
form of reuse that reduces the need to work on unlikable tasks, and output
templates can be changed to fit the needs of diverse users. The doclet
approach differs from other code generation approaches in that no new
specification files are needed. Instead, the normal source code contains
additional attributes used in code generation. This is a good match for the
open source tendency to emphasize the source code over other artifacts.

Quality Assurance Tools

JUnit, PHPUnit, PyUnit, and NUnit JUnit supports Java unit testing. It is
a simple framework that uses naming conventions to identify test classes
and test methods. A test executive executes all tests and produces a report.
The JUnit concepts and framework have been ported to nearly every pro-
gramming language, including PHPUnit for PHP, PyUnit for Python, and
NUnit for C#.

JUnit has been widely adopted in open source and traditional develop-
ment. It has two key features that address the practices of the open source

260 Jason Robbins

methodology: test automation, which helps to reduce the unlikable task
of manual testing that might not be done by volunteers; and unit test
reports, which provide universally accessible, objective indications of
project status. Frequent testing and constant assessment of product
quality support the practice of frequent releases. Visible test cases and test
results can also help emphasize quality as a goal for all projects in the
community.

Lint, LCLint, Splint, Checkstyle, JCSC, JDepend, PyCheck, RATS, and
Flawfinder The classic Unix command “lint” analyzes C source code for
common errors such as unreachable statements, uninitialized variables, or
incorrect calls to library functions. More recently designed programming
languages have tighter semantics, and modern compilers perform many of
these checks during every compilation. LCLint and splint go substantially
further than “lint” by analyzing the meaning of the code at a much deeper
level. Checkstyle, JCSC, and PyCheck look for stylistic errors in Java and
Python code. RATS and flawfinder look specifically for potential security
holes.

Adoption and use of these tools is limited, but several projects seem to
have started using Checkstyle and JDepend as part of Maven. Analysis tools
can also be viewed as a form of reuse where community knowledge is
encoded in rules. Relying on standard rules can help open source devel-
opers avoid discussions about coding conventions and focus on the added
value of the project. Static analysis can prompt peer review and help
address weaknesses in the knowledge of individual developers.

Codestriker Codestriker is a tool for remote code reviews. Developers can
create review topics, each of which consists of a set source file changes and
a list of reviewers. Reviewers then browse the source code and enter com-
ments that are related to specific lines of code. In the end, the review com-
ments are better organized, better contextualized, and more useful than an
unstructured e-mail discussion would have been.

Codestriker seems well matched to the open source development prac-
tices, but its usage does not seem to be widespread yet. It is accessible to
all project members, because it is Web-based and conceptually straightfor-
ward. If it were widely used, its model of inviting reviewers would give an
important tool to project leaders who seek to turn consumers into volun-
teers by giving them tasks that demand involvement and prepare them to
make further contributions.

Adopting OSSE Practices by Adopting OSSE Tools 261

Collaborative Development Environments

SourceCast and SourceForge CDEs, such as SourceCast and SourceForge,
allow users to easily create new project workspaces. These workspaces
provide access to a standard toolset consisting of a web server for project
content, mailing lists with archives, an issue tracker, and a revision control
system. Access control mechanisms determine the information that each
user can see and the operations that he or she can perform. CDEs also
define development communities where the same tools and practices are
used on every project, and where users can browse and search projects to
find reusable components. Both SourceCast and SourceForge include
roughly the same basic features. However, SourceCast has been used for
many public and private mid-sized communities with an emphasis on
security. And SourceForge has demonstrated enormous scalability on the
public http://sourceforge.net site and is also available for use on closed
networks.

CDEs have been widely adopted by open source projects. In particular,
a good fraction of all open source projects are now hosted on http://source-
forge.net. CDEs provide the infrastructure needed for universal access to
project information: they are Web-based, and both SourceCast and Source-
Forge have been internationalized. The use of a standardized toolset helps
projects avoid debating tool selection and focus on their particular added
value. SourceCast offers a customizable and fine-grained permission system
that supports diverse usage in both open source and corporate environ-
ments. SourceForge provides specific support for managing the deliverables
produced by frequent releases.

Missing Tools
Although there is a wide range of open source software engineering tools
available to support many software engineering activities, there are also
many traditional development activities that are not well supported. These
activities include requirements management, project management,
metrics, estimation, scheduling, and test suite design. The lack of tools in
some of these areas is understandable, because open source projects do not
need to meet deadlines or balance budgets. However, better requirements
management and testing tools would certainly seem just as useful in open
source work as they are in traditional development.

262 Jason Robbins

The Impact of Adopting OSSE Tools

Drawing conclusions about exactly how usage of these tools would affect
development inside a particular organization would require specific knowl-
edge about that organization. However, the previous descriptions can
suggest changes to look for after adoption:

� Because the tools are free and support casual use, more members of the
development team will be able to access and contribute to artifacts in all
phases of development. Stronger involvement can lead to better technical
understanding, which can increase productivity, improve quality, and
smooth hand-offs at key points in the development process.
� Because the “source” to all artifacts is available and up-to-date, there is
less wasted effort due to decisions based on outdated information. Working
with up-to-date information can reduce rework on downstream artifacts.
� Because causal contributors are supported in the development process,
nondeveloper stakeholders, such as management, sales, marketing, and
support, should be more able to constructively participate in the project.
Stronger involvement by more stakeholders can help quickly refine
requirements and better align expectations, which can increase the satis-
faction of internal customers.
� Because many of the tools support incremental releases, teams using
them should be better able to produce releases early and more often. Early
releases help manage project risk and set expectations. Frequent internal
releases can have the additional benefit of allowing rapid reaction to
changing market demands.
� Because many of the tools aim to reduce unlikable work, more develop-
ment effort should be freed for forward progress. Productivity increases,
faster time-to-market, and increased developer satisfaction are some poten-
tial benefits.
� Because peer review is addressed by many of the tools, projects may be
able to catch more defects in review or conduct more frequent small
reviews in reaction to changes. Peer reviews are generally accepted as an
effective complement to testing that can increase product quality, reduce
rework, and aid the professional development of team members.
� Because project Web sites, accessible issue trackers, and CDEs provide
access to the status and technical details of reusable components, other
projects may more readily evaluate and select these components for reuse.
Also, HOWTOs, FAQs, mailing lists, and issue trackers help to cost-
effectively support reused components. Expected benefits of increased

Adopting OSSE Practices by Adopting OSSE Tools 263

reuse include faster time-to-market, lower maintenance costs, and
improved quality.
� Because CDEs help establish communities, they offer both short- and
long-term benefits. In the short term, development communities can
reduce the administrative and training cost of using powerful tools, and
make secure access to diverse development artifacts practical. CDEs can
reinforce and compound the effects of individual tools, leading to long-
term benefits including accumulation of development knowledge in a
durable and accessible form, increased quality and reuse, and more
consistent adoption of the organization’s chosen methodology.

Notes

1. SourceForge is a trademark of VA Software Corporation.

2. SourceCast is a trademark of CollabNet, Inc.

264 Jason Robbins

IV Free/Open Source Software Economic and Business

Models

14 Open Source Software Projects as User Innovation

Networks

Eric von Hippel

Free and open source software projects are exciting examples of user inno-
vation networks that can be run by and for users—no manufacturer
required.1 Such networks have a great advantage over the manufacturer-
centered innovation development systems that have been the mainstay of
commerce for hundreds of years: they enable each user, whether an indi-
vidual or a corporation, to develop exactly what it wants rather than
relying on a manufacturer to act as its (often very imperfect) agent. More-
over, individual users do not have to develop everything they need on their
own: they can benefit from innovations developed by others and freely
shared within the user community.

User innovation networks existed long before and extend far beyond free
and open source software projects. Such networks can be found develop-
ing physical products as well. Consider and compare the following exam-
ples of early-stage user innovation networks—one in software, the other in
sports.

Apache Web Server Software

The Apache Web Server (which is free and open source software) is used
on server computers that host Web pages and provide appropriate content
as requested by Web browsers. Such computers are the backbone of the
Internet-based World Wide Web infrastructure.

The server software that evolved into Apache was developed by
University of Illinois undergraduate Rob McCool for, and while working
at, the National Center for Supercomputing Applications (NCSA). The
source code as developed and periodically modified by McCool was posted
on the Web so that users at other sites could download, use, modify, and
further develop it.

When McCool departed NCSA in mid-1994, a small group of webmas-
ters who had adopted his server software for their own sites decided to take
on the task of continued development. A core group of eight users gath-
ered all documentation and bug fixes and issued a consolidated patch. This
“patchy” Web server software evolved over time into Apache. Extensive
user feedback and modification yielded Apache 1.0, released on December
1, 1995.

In the space of four years and after many modifications and improve-
ments contributed by many users, Apache has become the most popular
Web server software on the Internet, garnering many industry awards for
excellence. Despite strong competition from commercial software devel-
opers such as Microsoft and Netscape, it is currently in use by more than
62 percent of the millions of Web sites worldwide.2

High-Performance Windsurfing

High-performance windsurfing, the evolution of which was documented
by Shah (2000), involves acrobatics such as midair jumps and turns. Pre-
viously, the sport tended to focus on traditional sailing techniques, using
windsurfing boards essentially as small, agile sailboats.

The fundamentals of high-performance windsurfing were developed in
1978 in Hawaii by a group of like-minded users. The development of a
major innovation in technique and equipment was described to Shah by
high-performance windsurfing pioneer Larry Stanley.

In 1978, Jurgen Honscheid came over from West Germany for the first
Hawaiian World Cup and discovered jumping, which was new to him,
although Mike Horgan and I were jumping in 1974 and 1975. There was
a new enthusiasm for jumping, and we were all trying to outdo each other
by jumping higher and higher. The problem was that the riders flew off in
midair because there was no way to keep the board with you—and as a
result you hurt your feet, your legs, and the board.

Then I remembered the “Chip,” a small experimental board we had built
with footstraps, and thought “It’s dumb not to use this for jumping.” That’s
when I first started jumping with footstraps and discovering controlled
flight. I could go so much faster than I ever thought, and when you hit a
wave it was like a motorcycle rider hitting a ramp; you just flew into the
air. All of a sudden, not only could you fly into the air, but you could land
the thing—and not only that, but you could change direction in the air!

The whole sport of high-performance windsurfing really started from
that. As soon as I did it, there were about 10 of us who sailed all the time

268 Eric von Hippel

together and within one or two days there were various boards out there
that had footstraps of various kinds on them and we were all going fast
and jumping waves and stuff. It just kind of snowballed from there.

By 1998, more than a million people were engaged in windsurfing, and
a large fraction of the boards sold incorporated the user-developed inno-
vations for the high-performance sport.

Over time, both of these user innovation networks have evolved and
become more complex. Today, although they look different on the surface,
they are in fact very similar in fundamental ways. Both have evolved to
include many thousands of volunteer participants. Participants in free and
open source software projects interact primarily via the Internet using
various specialized Web sites volunteer users have set up for their use. Par-
ticipants in innovation sports networks tend to interact by physically trav-
eling to favorite sports sites and to types of contests that innovative users
have designed for their sport. Most users of free and open source software
simply “use the code,” relying on interested volunteers to write new code,
debug others’ code, answer requests for help posted on Internet help sites,
and help coordinate the project. Similarly, most participants in an evolv-
ing sport simply “play the game,” relying on those so inclined to develop
new techniques and equipment, try out and improve innovations devel-
oped by others, voluntarily provide coaching, and help to coordinate
group activities such as leagues, and meets (Franke and Shah 2003).

User Innovation Networks “Shouldn’t Exist,” But They Do

Manufacturers, not users, have traditionally been considered the most
logical developers of the innovative products they sell. There are two major
reasons for this. First, financial incentives to innovate seem on the face of
it to be higher for manufacturers than for individual or corporate users
of a product or service. After all, a manufacturer has the opportunity to
sell what it develops to an entire marketplace of users. Individual user-
innovators, on the other hand, are seen as typically benefiting primarily
from their own internal use of their innovations. Benefiting from diffusion
of an innovation to the other users in a marketplace has been assumed to
require some form of intellectual property protection followed by licens-
ing. Both are costly to attempt, with very uncertain outcomes.

The second reason is that for an innovation to achieve widespread dif-
fusion invention and development must be followed by production, dis-
tribution, and field support. Because these tasks involve large economies
of scale for physical products, it has generally been assumed that

Open Source Software Projects as “User Innovation Networks” 269

manufacturers have major cost advantages over individual users and net-
works of users. How could users possibly accomplish these tasks as cost-
effectively as manufacturers?

Yet, implausible or not, user innovation development and consump-
tion networks clearly do exist. Moreover, when products they develop
compete head-to-head against products developed by manufacturers—
Apache against Microsoft’s and Netscape’s server software, for example—
the former seem capable of beating the latter handily in the marketplace.
Not only do these networks exist, they even triumph! As Galileo is said to
have murmured after officially recanting his statement that the earth
moves around the sun: “And yet it moves!” What is going on here?

Conditions that Favor User Innovation Networks

We argue that complete fully functional innovation networks can be built
up horizontally—with actors consisting only of innovation users (more
precisely, “user/self-manufacturers”). Of course, nonuser enterprises can
also attach to or assume valuable roles in user innovation networks. Red
Hat and IBM provide well-known examples of nonuser involvement in the
free and open source software context; professional sports leagues and
commercial producers of sports equipment are examples in the case of user
sports networks. It is only our contention that nonusers are not essential,
and that “horizontal” innovation networks consisting only of users can
develop, diffuse, maintain, and consume innovations.

Horizontal user innovation networks can flourish when (1) at least some
users have sufficient incentive to innovate and do so, (2) at least some users
have an incentive to voluntarily reveal their innovations and the means
to do so, and (3) diffusion of innovations by users can compete with com-
mercial production and distribution. When only the first two conditions
hold, a pattern of user innovation and trial will occur, followed by com-
mercial manufacture and distribution of innovations that prove to be of
general interest.

Innovation by Users
Users have sufficient incentive to innovate when they expect their bene-
fits to exceed their costs. Clearly, many innovators have a use-incentive
for innovating in free and open source software projects. Thus, Niedner,
Hertel, and Hermann (2000) report that contributors of code to open
source projects asked to agree or disagree with statements regarding their

270 Eric von Hippel

possible motivations for this ranked gain from “facilitating my work due
to better software” as the highest-ranked benefit (average level of respon-
dent agreement with that statement was 4.7 on a scale of 5). Similarly, 59
percent of contributors to open source projects sampled by Lakhani and
Wolf (chap. 1, this volume) report that use of the output they create is one
of the three most important incentives inducing them to innovate. Empir-
ical research also documents the presence of user innovation in many addi-
tional fields. Thus, Enos (1962); Knight (1963); Freeman (1968); Rosenberg
(1976a); von Hippel (1988); Shaw (1985); and Shah (2000) are among those
finding that users, rather than manufacturers, are often the initial devel-
opers of what later become commercially significant new products and
processes.

Innovation also has been found to be a relatively frequent activity
among users that have a strong interest in a product or process area, and
it tends to be concentrated in the “lead user” segment of user populations
(see Table 14.1).3

Research on innovation-related incentives and capabilities provides a
theoretical basis for all of these findings. Conditions under which users
will—and will not—have incentives to innovate have been explored (von
Hippel 1988). In addition, low-cost access to “sticky”4—costly to transfer—
information has been found to be an important enabling factor for user
innovation (von Hippel 1994; Ogawa 1997). Thus, information important
to successful innovation, such as need and context of use information is
generated at user sites and is naturally accessible there, but it can be very
costly to move from users’ sites to outside developers. For example, the
conditions that cause software—and jumping windsurfers—to fail are
available “for free” at the site of a user with the problem, but can be very
costly to reproduce elsewhere. Also, information about user needs and the
context of use is not static. Rather, it evolves at the user site through “learn-
ing by doing” as the user experiments with prototype innovations. (Recall
from the windsurfing example that users discovered that they could and
wanted to control the direction of a board when it was in the air only
after they began experimenting with the prototype footstraps they had
developed.)

The concentration of innovation activity among the “lead users” in a
user population can also be understood from an economic perspective.
Given that innovation is an economically motivated activity, users expect-
ing significantly higher economic or personal benefit from developing
an innovation—one of the two characteristics of lead users—will have a

Open Source Software Projects as “User Innovation Networks” 271

272 Eric von Hippel

Table 14.1
User innovation tends to be frequent and concentrated among “lead users”

Percentage

developing

and building Were the

Number of users innovation for innovating users

Innovation area sampled own use “lead users”?

Industrial products

Printed circuit 136 user/firm 24.3% Yes

CAD software (a) attendees at

PC-CAD

conference

Pipe hanger 74 pipe hanger 36% NA

hardware (b) installation firms

Library 102 Australian 26% Yes

information libraries using

systems (c) computerized

library information

systems

Apache OS 131 Apache users 19.1% Yes

server software

security features

(d)

Consumer products

Outdoor 153 outdoor-specialty 9.8% Yes

consumer mail-order catalog

products (e) recipients

“Extreme” 197 expert users 37.8% Yes

sporting

equipment (f)

Mountain biking 291 expert users 19.2% Yes

equipment (g)

Sources: (a) Urban and von Hippel 1988; (b) Herstatt and von Hippel 1992; (c) Mor-

rison, Roberts, and von Hippel 2000; (d) Franke and von Hippel 2002; (e) Luthje

2003; (f) Franke and Shah 2003; (g) Luthje, Herstatt, and von Hippel 2002.

higher incentive to innovate and are therefore more likely to do so. Also,
given that lead users experience needs in advance of the bulk of a target
market, the nature, risks, and eventual size of that target market are often
not clear to manufacturers. This lack of clarity can reduce manufacturers’
incentives to innovate, and increase the likelihood that lead users will be
the first to develop their own innovative solutions for needs that later
prove to represent mainstream market demand.

User Incentives to Freely Reveal Their Innovations
Progress and success in user innovation networks is contingent on at least
some users “freely revealing” their innovations.5 Without free revealing,
each user would have to redevelop the same innovation in order to use it,
resulting in a huge system-level cost, or resort to protecting and licensing
their innovations and collecting revenues from other users, which would
burden the networks with tremendous overhead.

Research has shown that users in a number of fields do freely reveal
details of their innovations to other users and even to manufacturers (von
Hippel and Finkelstein 1979; Allen 1983; Lim 2000; Morrison, Roberts,
and von Hippel 2000; Franke and Shah 2003). Of course, free revealing is
clearly visible in free and open source software networks, and is also clearly
present in the sports innovation example; innovating users gather on the
beach, inspect one another’s creations, and imitate or develop additional
modifications that they, in turn, freely reveal.

To economists, free revealing is surprising, because it violates a central
tenant of the economic theory of innovation. In this classical view, appro-
priating returns to innovation requires innovators to keep the knowledge
underlying an innovation secret or to protect it by patents or other means.
After all, noncompensated spillovers of innovation-related information
should represent a loss that innovators would seek to avoid if at all possi-
ble, even at some cost. Why then do we observe that some innovation-
related information is voluntarily freely revealed?

The answer to this puzzle has several components. First, note that soft-
ware code (and other public goods) have aspects that remain private to the
innovator even after the code has been freely revealed as a public good.
This thinking has been codified in a “private-collective” model of innova-
tion incentives (von Hippel and von Krogh 2003). As illustration, consider
some of the private benefits retained by users who write and then freely
reveal their code. Code may be written precisely to suit the private needs
of the code writer—and may serve the needs of free riders less well (Harhoff
et al. 2003). Also, the learning and enjoyment gained from actually writing

Open Source Software Projects as “User Innovation Networks” 273

the code—benefits that have been shown to be highly valued by contrib-
utors to open source software projects (Lakhani and Wolf, chap. 1, this
volume)—cannot be shared by free riders who only adopt the completed
product. Nor can the private reputation of an innovator be shared by a
free-riding adopter of that innovation (Lerner and Tirole 2002). Finally,
when free riders do adopt and use code that has been freely revealed, that
action in itself leads to significant private benefits for the code creator:
others will help debug the code; it may be integrated into the authorized
OS code, leading others to help update and maintain it; higher use (greater
“market share”) will yield “network effect” advantages; and so on.

A second point important to explaining the practice of free revealing is
that profitably creating and serving a market for software you may develop
is often not a trivial undertaking. And when benefits from free revealing
such as those just described exceed the benefits that are practically obtain-
able from other courses of action such as licensing or selling, then free
revealing should be the preferred course of action for a profit-seeking firm.

Finally, we note that the costs associated with free revealing may be
low—or in any case, unavoidable—because others who know the same
thing will reveal even if you do not. And when the costs of freely reveal-
ing an innovation are low, even a low level of benefit can be adequate
reward. Competitive losses from free revealing of intellectual property
depend upon the degree of rivalry between the software developer and
those who may adopt that software as free riders. Thus, users who write
and freely reveal software code will expect low losses if they have only low
or no rivalry with potential adopters. (For example, there is low rivalry
among town libraries: they serve different populations and do not seek to
gain market share from each other.) Also, if more than one person or firm
has developed a particular piece of software, everyone’s decision to freely
reveal can be determined by the action of the innovator with the least to
lose. That is, even those who would prefer to hide their software to keep
it from rivals may nonetheless freely reveal if they expect that others will
do this if they do not (Lakhani and von Hippel 2003).

Innovation Diffusion by Users
“Full-function” user innovation and production networks—no manu-
facturer required—are possible only when self-manufacturing and/or
distribution of innovative products directly by users can compete with
commercial production and distribution. In the case of free and open
source software, this is possible because innovations can be “produced”

274 Eric von Hippel

and distributed essentially for free on the Web, software being an infor-
mation rather than a physical product (Kollock 1999). In the case of the
sports innovation example, though, equipment (but not technique)
innovations are embodied in a physical product that, to achieve general
diffusion, must be produced and physically distributed; activities that, as
mentioned earlier, involve significant economies of scale. The result, in the
case of the windsurfing example and for physical products generally, is that
while innovation can be carried out by users and within user innovation
networks, production and diffusion of products incorporating those inno-
vations is usually carried out by manufacturing firms (figure 14.1).

Ongoing Exploration of User Innovation Networks

The advent of the Web and consequent public proliferation of free and
open source software development projects has focused intense academic
attention on the phenomenon of user innovation networks in general, and
free and open source software in particular. The thousands of extant free

Open Source Software Projects as “User Innovation Networks” 275

manufacturer

Figure 14.1
How lead user innovations are distributed

and open source software projects represent natural experiments that
academics and others can study to better understand this phenomenon.
Among the issues being explored now are conditions under which free and
open source software projects can be expected to succeed, how they can
be most successfully managed, and what attracts the interest of volunteers.
We can expect rapid progress on these fronts.

What is very exciting, it seems to us, is that innovation networks
exclusively by and for users, networks that by any yardstick of traditional
economics shouldn’t exist, can create, diffuse and maintain complex
innovation products without any manufacturer involvement. This means
that in at least some, and probably many, important fields users can build,
consume, and support innovations on their own independent of manu-
facturer incentives to participate and manufacturer-related “agency costs.”6

Direct development and diffusion of innovations by and for users via
horizontal user innovation networks can improve individual user’s abili-
ties to get what they really want—because they have an increasingly
practical and economical pathway to “do it themselves.” As we learn to
understand these networks better, we will be in a position to improve such
networks where they now exist and may be able to extend their reach and
attendant advantages as well.7

Notes

1. In the “functional” sources of innovation lexicon, economic actors are defined

in terms of the way in which they expect to derive benefit from a given innovation.

Thus, firms or individuals that expect to profit from an innovation by in-house use

are innovation “users.” Innovation “manufacturers,” in contrast, are firms or indi-

viduals that expect to profit from an innovation by selling it in the marketplace

(von Hippel 1988). By user “network,” I mean user nodes interconnected by infor-

mation transfer links that may involve face-to-face, electronic, or any other form of

communication. User networks can exist within the boundaries of a membership

group but need not. User innovation networks also may, but need not, incorporate

the qualities of user “communities” for participants, where these are defined as “net-

works of interpersonal ties that provide sociability, support, information, a sense of

belonging, and social identity” (Wellman, Boase, and Chen 2002, 4).

2. Netcraft April 2003 Web Server Survey, http://news.netcraft.com/archives/2003/

04/13/april_2003_web_server_survey.html.

3. Lead users are defined as users of a given product or service type that combine

two characteristics: (1) lead users expect attractive innovation-related benefits from

a solution to their needs and are therefore motivated to innovate, and (2) lead users

276 Eric von Hippel

experience needs that will become general in a marketplace, but experience them

months or years earlier than the majority of the target market (von Hippel 1986).

Note that lead users are not the same as early adopters of an innovation. They are

typically ahead of the entire adoption curve in that they experience needs before

any responsive commercial products exist—and therefore often develop their own

solutions.

4. The stickiness of a given unit of information in a given instance is defined as the

incremental expenditure required to transfer that unit of information to a specified

locus in a form useable by a given information seeker. When this cost is low, infor-

mation stickiness is low; when it is high, stickiness is high. A number of researchers

have both argued and shown that information required by technical problem-

solvers is indeed often costly to transfer for a range of reasons (von Hippel 1994).

The requirement to transfer information from its point of origin to a specified

problem-solving site will not affect the locus of problem-solving activity when that

information can be shifted at no or little cost. However, when it is costly to trans-

fer from one site to another in useable form—in my term, sticky—the distribution

of problem-solving activities can be significantly affected.

5. When we say that an innovator “freely reveals” proprietary information, we

mean that all existing and potential intellectual property rights to that information

are voluntarily given up by that innovator and all interested parties are given access

to it—the information becomes a public good. Thus, free revealing of information

by a possessor is defined as the granting of access to all interested agents without

imposition of any direct payment. For example, placement of nonpatented infor-

mation in a publicly accessible site such as a journal or public Web site would be

free revealing under this definition. Note that free revealing as so defined does not

mean that recipients necessarily acquire and utilize the revealed information at no

cost to themselves. Recipients might, for example, have to pay for a journal sub-

scription or an Internet connection or a field trip to acquire the information being

freely revealed. Also, some may have to obtain complementary information or other

assets in order to fully understand that information or put it to use. However, if the

information possessor does not profit from any such expenditures made by infor-

mation adopters, the information itself is still freely revealed, according to our def-

inition (Harhoff et al. 2003).

6. Manufacturers are the agents of users with respect to new products and services.

It is their job to develop and build what users want and need; they do not want the

products for themselves. The trouble is that, when manufacturers’ incentives don’t

match those of users—and they often do not—users end up paying an agency cost

when they delegate design to manufacturers. A major part of this agency cost takes

the form of being offered products that are not the best possible fit with users’ needs,

even assuming that manufacturers know precisely what those needs are. Manufac-

turers want to spread their development costs over as many users as possible, which

Open Source Software Projects as “User Innovation Networks” 277

leads them to want to design products that are a close enough fit to induce pur-

chase from many users rather than to design precisely what any particular user really

wants.

7. Recent working papers on free and open source software and user innovation by

many researchers can be downloaded from the Web sites http://opensource.mit.edu

and http://userinnovation.mit.edu. These sites are intended for those interested in

keeping up-to-date on, and perhaps contributing to, our understanding of these

phenomena.

278 Eric von Hippel

15 An Analysis of Open Source Business Models

Sandeep Krishnamurthy

Open source software products provide access to the source code (or basic
instructions) in addition to executable programs, and allow for this source
code to be modified and redistributed. This freedom is a rarity in an indus-
try where software makers zealously guard the source code as intellectual
property.

In making the source code freely available, a large number of develop-
ers are able to work on the product. The result is a community of devel-
opers spread around the world working to better a product. This approach
has led to the popular operating system Linux, which has emerged as a
credible threat to Microsoft’s products—especially on the server side. Other
famous open-source products include Apache (a program used to run Web
sites), OpenOffice (an alternative to Microsoft Office), and Sendmail (the
program that facilitates the delivery of approximately 80 percent of the
world’s e-mail).

Open source is typically viewed as a cooperative approach to product
development, and hence more of a technology model. It is typically not
viewed as a business approach. However, increasingly we find that entire
companies are being formed around the open source concept. In a short
period of time, these companies have amassed considerable revenues
(although it is fair to say that most of these firms are not yet profitable).

Consider two companies in particular: Red Hat and Caledera/SCO.1 In
its last full year of operations (12 months ending February 28, 2002), Red
Hat’s revenues were almost $79 million. In its last full year of operations
(12 months ending October 31, 2002) Caldera/SCO’s revenues were about
$64 million. The growth figures are even more impressive—Caldera/SCO
grew its revenue from $1 million in 1998 to $64 million in 2002 and Red
Hat grew from $42 million in 2000 to $79 million in 2002.

All software companies exist to make maximum profits. Therefore, it
is common for these corporations to seek out new ways of generating

revenues and reducing costs. Increasingly, companies are using open source
as a business strategy to achieve both these objectives.

On the cost reduction side, software producers are now able to incorpo-
rate the source code from an open source product into an existing code
base. This allows them to reduce the cost of production by reusing exist-
ing code. For example, Microsoft, the world’s largest software maker, has
used source code from a leading open source operating system (Berkeley
System Distribution or BSD) in its Windows 2000 and XP products and has
acknowledged this on a public web site.2 It is becoming more common for
companies to forge strategic alliances with communities of open source
software developers. The community develops the product and thus
reduces the cost burden on the company. A prime example of this is the
strategic alliance between Ximian and Microsoft in building a connection
between the Net initiative and Linux.3

On the revenue side, some open source products are now in such great
demand that there is a strong need for support services for enterprise cus-
tomers. These support services includes installation, training/certification,
and ongoing technical assistance. Service contracts for these products have
become a strong revenue source for companies such as Red Hat Linux.

From the consumer perspective, open source products are attractive due
to their reduced cost and comparable performance. Governments, for
example, are increasingly motivated to adopt open source products to
reduce the expenditure of scarce taxpayer money. Some governments (such
as Argentina and Peru) have experimented with moving entirely to an
open-source model.

Even for individual consumers, open source products are becoming
accessible. Wal-Mart has started to carry PCs that run Linux. Many free
applications are now available for PCs. For example, OpenOffice and
KOffice are free, open source products that directly compete with
Microsoft’s Office suite.

In this chapter, my focus is on explicating the different business models
that we see in the open-source arena.

Producers of Open Source Products—The Community

The producers of open source products (figure 15.1) are typically a diverse
group of developers with a shared passion for a product. They do not seek
a profit and do not distinguish between corporate and individual users.

Therefore, they make (a) the product and (b) the source code available
for free to any interested user. There is usually support available through

280 Sandeep Krishnamurthy

electronic mailing lists and Usenet groups. Members participate to learn
more about the product and believe that others will help them if they have
a need (Lakhani and von Hippel 2003). Surprisingly, the customer support
provided by communities surrounding products such as Apache and Linux
have won awards for excellence.

The community of producers is frequently portrayed as being inimical
to corporate profits. However, I submit that the community is simply
indifferent to its own profits as well as profits that any corporation can make
from its products. Open source developer communities are frequently
interested in adoption of the product by the intended target audience.
Importantly, they want any interested developer to have access to the
entire code so that the person can tinker with it to make improvements.

There is no sense of direct competition with companies. A company that
views a community as its competitor is welcome to look at its entire source
code, whereas the opposite is never true. Communities do not distinguish
between users across countries. When the product is available for free, it
is amazingly easy to make a product global. There is no issue of taxation
or piracy.

Analysis of Open Source Business Models 281

Producers of Open Source Software
“Community”

Free Free

WORLD

Legend: Product
Source Code
Service

Figure 15.1
Producers of open source products

The community controls what happens with the product by making one
crucial choice—the license. The original developers control the copyright
for the intellectual property at all times. However, there is considerable
variation between licenses with regard to how derived works may be
distributed.

There are a number of licenses from which communities can choose.
However, they can be broadly classified as the GNU General Public License
(GPL) versus everything else. The GPL is the most famous license and prod-
ucts such as Linux are distributed using it. The key feature of the GPL is
that it restricts the terms of distribution of derived works. If a company
incorporates GPLed source code in its products, it must make the source
code for any product it sells in the marketplace available to any interested
party under the terms of the GPL. This provision frightens corporations
interested in selling open source products. However, it is important to
note that there is a whole host of other licenses that do not have this
stipulation.

In my view, the derived works clause is so powerful that it affects how
business models are constructed. The discussion about business models is
therefore broken down into the GPL and the non-GPL model. Generally
speaking, use of GPL reduces the profit potential of companies.

It is very important to note that the open source community does not
set a price on a software product. Even in the case when the product is
available for free, anybody can incorporate the product and sell it for a
price. Even with a GPL license this is possible. Obviously, in the case of
GPL, there is the attendant duty of making the source code for derived
works freely available.

Business Models

In this section, I discuss the main business models built around the open
source philosophy. It is certainly true that some companies benefit from
the sale of hardware that runs open source products. Similarly, the market
for embedded products can be great. However, for the purposes of this
chapter, I focus on the software and service-oriented business.

The Distributor
The distributor provides access to the source code and the software. In the
case of Linux, leading distributors include Red Hat, Caldera, and SUSE. Dis-
tributors make money in these ways:

282 Sandeep Krishnamurthy

1. Providing the product on CD rather than as an online download—most
people are not comfortable with downloading the product from a Web site.
One survey of 113,794 Linux users indicated that 37 percent of respon-
dents preferred to obtain Linux in CD form.4 Therefore, there is money
to be made selling the product in CD form. According to one source
(http://www.distrowatch.com), as of February 2003, the highest price that
was being charged for a Linux CD was $129 (Lindows) and the lowest price
for a CD was zero (for instance, Debian and Gentoo).
2. Providing support services to enterprise customers—enterprises are
willing to pay for accountability. When they have a problem, they do not
want to send a message to a mailing list and wait for support that may or
may not be of the highest quality. They have no interest in sifting through
technical FAQs to find the answer. Therefore, there is money to be made
in services such as support for installation, answering technical questions
and training employees to use the product.
3. Upgrade services—in which enterprises can now enter into long-term
agreements with distributors to ensure that they get the latest upgrade. By
acting as application service providers, distributors can help their clients
get the latest version of the product seamlessly.

The business model of distributors is shown in figure 15.2.

The Software Producer (Non-GPL Model)
Software producers can benefit from the open source software community
in two ways. First, they can incorporate the source code of an existing
product in a larger code base and create a new product. Second, they can
also take an entire open source product and bundle it with existing prod-
ucts. (I am using the term derived product in a very general sense here to
include both these cases.) The source code for the derived product does
not need to be disclosed, because the license is not GPL.

As mentioned earlier, Microsoft has incorporated the code from BSD in its
products and has not released the source code to any interested party. All
Microsoft had to do was to acknowledge that it benefited from BSD’s code.

The software producer benefits from lowered cost of production and
hence increased margin, in this case. There is a service revenue stream in
place here as well. The business model itself is shown in figure 15.3.

Interestingly, the source code for the original product is still available to
the end users from the community. In the cases where the derived product
is a small adaptation of the original product, this may be very useful to
the end users. This is the cost the for-profit software producer pays to get
the source code for free.

Analysis of Open Source Business Models 283

The Software Producer (GPL Model)
The key difference between figures 15.3 and 15.4 is that in the latter, which
shows the business model for this case, the software producer is forced
to make the source code for the derived product available to the end
user.

Let us compare the GPL and non-GPL models. The release of the source
code in the GPL model accelerates innovation, due to more rapid feedback
and input. Greater inclusion of users builds relationships, and hence
loyalty. Also, if the user builds a new version of the product for commercial
use, the company gets to see it along with the source code. However, it
does expose the inner workings of the company’s product to the users.

Ultimately, the difference between the GPL and non-GPL models is in
terms of what the seller expects from the user. The GPL software producer
expects an empowered user who is eager to engage in a two-way conver-
sation. The non-GPL software producer wants the recipient of the software
to simply use it and do nothing else.

284 Sandeep Krishnamurthy

Producers of Open Source Software
“Community”

Free

Free or $ Free or $$Free Free

Free Free

Free

Legend: Product
Source Code
Service

Distributor

Users [Corporations] Users [Individuals]

Figure 15.2
The distributor business model

The Third-Party Service Provider
The mission of third-party service providers is simple. They don’t care
where you got the code or where you got the product. If the product you
are using meets a broad set of criteria, they will fully support it. They have
one single revenue stream—service. Their business model is shown in
figure 15.5.

Why should users—especially corporations—use these providers? The
bottom line is that paid service generally equates to higher-quality service.
Moreover, in many cases, third-party service providers are local and may
therefore be able to provide onsite assistance that is typically impossible
in the case of free service on mailing lists and user groups. It is important
to keep in mind that these service providers are competing with the com-
munity to provide customer service.

I have presented two types of models here—one in which the company
sells software and service and one in which a company simply offers a
service. It is interesting to speculate on whether a company can survive on
the sale of software alone.

Analysis of Open Source Business Models 285

Producers of Open Source Software
“Community”

Free

Free Free

Free

Legend:

Software Producer

$ $ $

Users [Corporations] Users [Individuals]

Original Product
Source Code Service

Derived Product

Figure 15.3
The software producer—non-GPL model

Surviving on the sale of software alone is not easy to achieve. Remem-
ber that the community is already making a free version of the product
available. The company must be able to add considerable value to the
product to generate sufficient margins.

How can a company add value? First, it can choose a version of the
product that is stable and that is most suited to its users’ needs. Second, it
can create a suite of products that are well integrated. These products may
come from different sources—some open source, some commercial. The
value addition is in creating one package that works well together.

In general, we find that sale of software alone is insufficient to sustain a
business. What is needed is software and service. For many software sellers,
they already have a relationship with enterprise customers. They can
benefit most by up-selling—that is, selling more to existing corporate cus-
tomers. Selling service then becomes a logical conclusion. Even with
commercial software, all software sellers use service as a strong secondary
revenue stream.

286 Sandeep Krishnamurthy

Producers of Open Source Software
“Community”

Free

Free Free

Free$ $ $Free

Free

Legend:

Users [Corporations] Users [Individuals]

Original Product
Source Code

Derived Product
Service

Software Producer

Figure 15.4
The software producer—GPL model

Advantages and Disadvantages of Open Source

Let us now take a close look at the potential advantages and disadvantages
of using open-source technology to develop new products.

Advantages

Robustness Traditionally, a company hires a set number of developers to
craft the software. Next, a group of testers work with the product to make
sure the number of bugs is minimized. After that point, the product is
launched to the market. In direct contrast with the open source method,
a much larger number of developers and testers can work on the product
and test it under a variety of conditions.

The open source method could potentially lead to a more robust
product. The term robust here is used in Neumann’s sense—that is, an inten-
tionally inclusive term embracing meaningful security, reliability, avail-
ability, and system survivability in the face of a wide and realistic range of

Analysis of Open Source Business Models 287

Producers of Open Source Software
“Community”

Free

Free Free

Free

Legend:
Source Code
Original Product

Service

Third-Party Service Provider

$ $

Users [Corporations] Users [Individuals]

Figure 15.5
Third-party service provider

potential adversities (Neumann 1999). Open source leaders have long
maintained that this methodology leads to greater reliability (Ghosh
1998b).

Several studies corroborate this. A study by Bloor Research clearly
demonstrated the superior robustness of Linux over Windows NT (Godden
2000). A study conducted by Netcraft in August 2001 found that 92 percent
of the top 50 often-requested sites with the longest uptimes ran Apache
(http://uptime.netcraft.com).

Flexibility to User One of the problems with regular software programs is
that unless you work with all the software from one company, you do not
have the flexibility of “mixing and matching.” In the words of Linus
Torvalds (Ghosh 1998b), “In fact, one of the whole ideas with free software
is not so much the price thing and not having to pay cash for it, but the fact
that with free software you aren’t tied to any one commercial vendor. You
might use some commercial software on top of Linux, but you aren’t forced
to do that or even to run the standard Linux kernel at all if you don’t want
to. You can mix the different software you have to suit yourself.”

Support from a Community Traditionally, if a user has a problem, he or
she has to contact the technical support division of the company. In many
cases, the level of support is poor (especially in the case of free service) or
the user may have to pay a fee to get high-quality service. Moreover, after
a point, users are asked to pay for this support. With open source software,
one has a highly motivated community willing to answer questions
(Lakhani and von Hippel 2003). In the case of Linux, Linux User Groups
(or LUGs) are numerous and do an excellent job providing service.

Disadvantages
Even though open source product development has a lot of positives, it
also comes with its share of negatives.

Version Proliferation Consider the data in table 15.1. This is based on the
survey of 3568 machines. The count is the number of machines and
the percentage is of machines running a particular version. As shown in
the table, there are at least 62 versions of the software running at this time.

The reason for this multiplicity of versions is due to a complicated
version release structure employed by Linux. Releases can be either even-
numbered or odd-numbered. The former represent relatively stable soft-
ware that can be used by enterprise customers. In particular, version 2.0

288 Sandeep Krishnamurthy

and 2.2 were major releases that were a long time in the making. On the
other hand, odd-numbered releases are developmental versions of the
product with new product features. This complicated structure was
employed to satisfy two audiences—developers and enterprise customers
(Moon and Sproull 2000).

This version proliferation makes it very difficult for the end-user to iden-
tify the best version of the product. Companies such as Red Hat play an
important role here by selecting one version to support.

Usability Some open source products suffer from poor usability (Nichols
and Twidale 2003). This problem may stem from the way projects are struc-
tured, the nature of the audience, and the level of resources available to
open source projects. However, for major products (such as Stars), this is
an opportunity for a new business.

Analyzing the Profit Potential of Open Source Products

Not all open source products have a high profit potential. To analyze the
profit potential of an open-source product, I use two dimensions—cus-
tomer applicability and relative product importance. The classification
scheme that results from this is shown in figure 15.6.

Customer applicability refers to the proportion of the market that can
benefit from the software. For example, if a product is being designed
for a rarely used operating system, only a small proportion of consumers
will be able to benefit from it. This will make the level of customer applic-
ability small. On the other extreme, some products are designed for a
large number of computing environments or the computing environ-
ment that is most commonly found. This makes it high on customer
applicability.

Relative product importance refers to how important a program is to the
functioning of the user’s computer. An operating system is clearly the most
important. Without it, the computer will not be able to function. On the
other extreme, a screensaver program will add some value to the user—but
it is something that the user can do without.

The products with the highest profit potential have high relative product
importance and high customer applicability (Quadrant II in figure 15.6).
These are the stars that we hear most about. Companies are started around
these products. They have large developer communities supporting
them. These products have the greatest direct and indirect marketing
support. These products have the highest profit potential. An example of

Analysis of Open Source Business Models 289

290 Sandeep Krishnamurthy

Table 15.1
Survey of Linux kernel versions

Number Kernel Count % Number Kernel Count %

1 2.0.28 3 0.10% 58 2 33 0.90%

2 2.0.32 2 0.10% 59 2.2 488 13.70%

3 2.0.33 2 0.10% 60 2.4 3,019 84.60%

4 2.0.34 2 0.10% 61 2.5 25 0.70%

5 2.0.34C52 SK 2 0.10% 62 Others 0.10%

6 2.0.36 6 0.20%

7 2.0.37 4 0.10%

8 2.0.38 5 0.10%

9 2.0.39 3 0.10%

10 2.2.10 2 0.10%

11 2.2.12 10 0.30%

12 2.2.13 15 0.40%

13 2.2.14 34 1.00%

14 2.2.15 2 0.10%

15 2.2.16 62 1.70%

16 2.2.17 23 0.60%

17 2.2.18 23 0.60%

18 2.2.18pre21 4 0.10%

19 2.2.19 126 3.50%

20 2.2.19ext3 5 0.10%

21 2.2.19pre17 11 0.30%

22 2.2.20 69 1.90%

23 2.2.20RAID 2 0.10%

24 2.2.21 11 0.30%

25 2.2.22 29 0.80%

26 2.2.23 10 0.30%

27 2.2.24 8 0.20%

28 2.2.25 24 0.70%

29 2.2.5 9 0.30%

30 2.4.0 6 0.20%

31 2.4.10 42 1.20%

32 2.4.12 10 0.30%

33 2.4.13 9 0.30%

Analysis of Open Source Business Models 291

Table 15.1
(continued)

Number Kernel Count %

34 2.4.14 12 0.30%

35 2.4.16 48 1.30%

36 2.4.17 63 1.80%

37 2.4.18 1056 29.60%

38 2.4.19 391 11.00%

39 2.4.2 44 1.20%

40 2.4.20 942 26.40%

41 2.4.20.1 2 0.10%

42 2.4.21 178 5.00%

43 2.4.3 13 0.40%

44 2.4.4 28 0.80%

45 2.4.5 9 0.30%

46 2.4.6 7 0.20%

47 2.4.7 54 1.50%

48 2.4.8 18 0.50%

49 2.4.9 46 1.30%

50 2.4.x 2 0.10%

51 2.5.63 2 0.10%

52 2.5.65 2 0.10%

53 2.5.66 2 0.10%

54 2.5.67 4 0.10%

55 2.5.68 4 0.10%

56 2.5.69 6 0.20%

57 Others 1.70%

Source: Alvestrand, Harald, “The Linux Counter Project,” http://www.linuxcounter.org,

accessed May 14, 2003)

such a product is Linux. Its relative importance is high because it is an
operating system and its customer applicability is high because it can be
installed on every desktop PC.

On the other extreme, products that have low relative product impor-
tance and low customer applicability are the low-profile nichers (Quadrant
III in figure 15.6). These products serve a specific niche and itch a small
scratch (Raymond 2001). They are never going to be dominant products
that will run on a large proportion of desktops. But that is not the goal of
the creators of these products. The creators know they are filling a small
niche and their goal is to fill it effectively. These products have the lowest
profit potential. A good example of such a product is Wings3D, which is
a very powerful polygon mesh modeler. This is perhaps a program that
students of advanced mathematics might find useful.

292 Sandeep Krishnamurthy

High Relative Product Importance
[e.g., Operating System]

Quadrant II

STARS

Quadrant I
High-profile
Nichers.

Low Customer Applicability
[e.g., O5/2 desktops]

Low Relative Product Importance
[e.g., File Management Utility]

High Customer Applicability
[e.g., All Desktop PCs]

Quadrant III
Low-profile
Nichers.

Quadrant IV
Mainstream
Utilities.

Figure 15.6
Classification of open source products

The products with low relative product importance and high customer
applicability are the mainstream utilities (Quadrant IV in figure 15.6). These
are products that everybody can benefit from. However, they are not critical
to the functionality of the computer. For instance, TouchGraph’s Google
Browser converts the search results within result into a graphical map. This
makes for an interesting map of the results. However, it may not be some-
thing, by itself, that is commercially feasible. Another great example of a
mainstream utility is Agnostos—a Web-based tool for managing to-do lists.
Such products could make excellent promotional items for companies.

Finally, the products with high relative product importance and low
customer applicability are the high-profile nichers (Quadrant I in figure
15.6). These products are regarded very highly within the specific niche
that they serve. However, beyond that, they are not well known. If mar-
keted well, they can lead to a profitable operation. A great example of this
is SquirrelMail. This is a program that can be used to run an Internet Service
Provider’s (ISP) mail operation. It is very well regarded within its niche.

Why Should Corporate Users Switch to Open Source Products?

There are three responses to this question.
The first issue is product performance. Large companies will not adopt

a product just because it is built using a certain product development style.
They care about performance. Open source products have been making
inroads into large companies because they are good—it is just that simple.
In many cases, open-source products have been evaluated for their tech-
nical merits and their ability to meet stringent requirements. They have
been adopted because they met and exceeded these requirements. Exam-
ples of notable adoptions include Amazon and Yahoo’s use of Perl, Orbitz’s
use of Linux and Apache, and Google’s usage of Linux.

Second, since open source products are usually available for free as an
online download, corporations can treat it as a low product risk. They can
download the product and play with it in a back office for a while. Even
if they decide not to implement it, they will have not paid anything. Of
course, this only covers the upfront cost of purchasing the product (see
next point about total cost of ownership).

Third, corporations must evaluate the total cost of ownership (i.e., the
cost of purchasing, installing, and maintaining the product) of corporate
alternatives with open source products and see what that tells them. If the
total cost of ownership is in fact lower with open source products, there
may be a case. The total cost of ownership is sensitive to the nature of the
organization and should be evaluated by each organization as such.

Analysis of Open Source Business Models 293

Key Factors that Affect Profits

Support from Primary Developer Community
The key engine for innovation within the open source ecosystem is the
primary developer community (Shankland 2002). If this community is
focused on innovation, everybody benefits. Distributors can use the
latest version in their next release. Software producers can add the latest
code. Customers get the product with the best performance that is most
stable.

The success of a developer community crucially depends on its leader-
ship structure. However, a variety of leadership styles and structures are
observed. For instance, Linus Torvalds is generally considered to be a strong
leader in all senses of the word. On the other hand, a committee runs
Apache. At this time, it seems like the issue is clarity of the direction for
the project. This may be provided by one leader or a group of people
working closely together.

Presence of Dominant Competitive OSS Products
OSS products compete with each other fiercely. Open source products
compete for developers, distributors, and customers. Developers want to
be associated with products that are likely to have a major impact. Dis-
tributors would like to devote resources only to products that are likely to
become very successful. Customers want to use products that they can rely
on.

There are two levels of competition: the product category level (BSD and
Linux are competing open source operating systems) and the distribution
level (the distributors of Linux are in aggressive competition with each
other).

The competition among Linux distributors is especially interesting. Red
Hat has established a dominant position—especially in the American
market. One source puts its market share in the 50 percent range.5

However, many other distributors are vying for share. Recently, four Linux
distributors—Caldera, Conectiva, SuSE, and TurboLinux—have decided
that instead of competing with one another, they must compete with the
market leader, Red Hat. To this end, they have formed a group called
UnitedLinux. This company will release one product that all four will
support. However, each individual company retains its identity and will
strive to differentiate on the service side.

While some competition may be necessary for product innovation,
excessive competition can hamper long-term profitability.

294 Sandeep Krishnamurthy

Presence of Dominant Competitive Closed Source Products
Perhaps the greatest threat to profits from an OSS product is the presence
of competitive non-OSS products. Linux competes with Microsoft’s
Windows products. OpenOffice competes with Microsoft Office. Products
such as OpenCourse and Moodle compete with commercial products such
as WebCT and Blackboard in the course design arena.

In all these cases, the commercial competitor has a resource advantage
that can be used to gain market power through advertising, salesperson
interaction with large corporations, and public relations. Sometimes the
presence of such competition creates an underdog mentality that can help
the open-source product to some degree. On the other hand, it is very hard
to compete with major corporations on a regular basis.

Relative Competitive Position
In the final analysis, what really matters is the competitiveness of the
product. If the product is truly innovative, it will have a strong chance. If
it is does not stack up well against competitive products, it will not. The
hope is that making the source code available for free will lead to greater
innovation. However, this may fail to materialize if a software product does
not attract too many developers.

Need for Marketing
Building awareness for open source products is a challenge. Consider the
case of Linux. There is a two-level challenge here. On the first level, one
must build awareness for Linux itself (product category awareness). On the
second level, one must create awareness for a specific distribution, such as
Red Hat (brand awareness). Distributors will be interested in boosting only
brand awareness. Red Hat wants to be closely associated with Linux and
wants people to equate Linux with their brand name.

If there are no companies in the market, the community will have to
take on this challenge. In that case, awareness is built using techniques
such as word of mouth that are not resource-intensive.

Of course, building awareness alone is insufficient. What is needed is
greater product knowledge followed by trial of the product.

Conclusion

We now know that it is possible to build a business around the open source
strategy. We are increasingly finding that open source software com-
munities are awesome competitors. They are able to compete with large

Analysis of Open Source Business Models 295

companies on an equal footing and even defeat them. They are, therefore,
not to taken lightly or dismissed offhand.

Open source software is not for hobbyists any more. Instead, it is a busi-
ness strategy with broad applicability. Businesses can be built around this
idea. When reading this paper, I want the reader to grapple with the
specifics of how to build and grow such a business.

To this end, I have proposed three fundamental business models: dis-
tributor, software producer (GPL and non-GPL), and the third-party service
provider. These are sustainable models that can lead to robust revenue
streams. The business models provided here can be enhanced by the addi-
tion of further revenue streams. For instance, we now know that certifica-
tion of developers on an open source product can lead to strong revenues.

Not all products have the same profit potential. Therefore, not all open
source software products have the same profit potential. I have classified
open source software products into four categories: Stars, High-profile
nichers, Low-profile nichers, and Mainstream utilities. Businesses can be
built around Stars. High-profile nichers can lead to robust revenue streams
if properly marketed. The other two categories may not lead to high profits.
Because many open source software products are freely available, managers
must scan public repositories to find out which products will be suitable
for their business.

The future of open source software is bright. Increasingly, we will find
that these products will take a central role in the realm of software and
will find a larger place in all our lives.

Notes

1. SCO has been in the news recently for its contentious lawsuit with IBM. The

lawsuit claims that IBM inappropriately used portions of source code copyrighted

by SCO. Details of the legal battle are available at http://www.groklaw.net.

2. See http://support.microsoft.com. Knowledge Base article 306819.

3. Ximian is now owned by Novell.

4. http://counter.li.org/reports/machines.html, accessed on February 9, 2002.

5. http://www.newsfactor.com/perl/story/20036.html

296 Sandeep Krishnamurthy

16 Allocation of Software Development Resources in

Open Source Production Mode

Jean-Michel Dalle and Paul A. David

I find that teams can grow much more complex entities in four months than they

can build.

—Frederick P. Brooks, Jr.; The Mythical Man-Month

We aim in this chapter to develop a stochastic simulation structure capable
of describing the decentralized, microlevel decisions that allocate program-
ming resources both within and among free/libre and open source soft-
ware (FLOSS) projects, and that thereby generate an array of FLOSS system
products, each of which possesses particular qualitative attributes.1 Agent-
based modeling of this kind offers a framework for integrating microlevel
empirical data about the extent and distribution of participation in “open
source” program development, with mesolevel observations concerning
the social norms and organizational rules governing those activities. It thus
takes a step beyond the preoccupation of much of the recent economics
literature with the nature of the current and prospective rewards—whether
psychic or material—that motivate individuals to develop and freely dis-
tribute open source software. Moreover, by facilitating investigation of the
“general equilibrium” implications of the microbehaviors among the par-
ticipants in FLOSS communities, this modeling approach provides a pow-
erful tool for identifying critical structural relationships and parameters
that affect the emergent properties of the macro system.

The core or behavioral kernel of the stochastic simulation model of open
source and free software production presented here represents the effects
of the reputational reward structure of FLOSS communities (as charac-
terized by Raymond 2001) to be the key mechanism governing the pro-
babilistic allocation of agents’ individual contributions among the
constituent components of an evolving software system. In this regard, our
approach follows the institutional analysis approach associated with
studies of academic researchers in “open science” communities. For the

purposes of this first step, the focus of the analysis is confined to showing
the ways in which the specific norms of the reward system and organiza-
tional rules can shape emergent properties of successive releases of code
for a given project, such as its range of functions and reliability. The global
performance of the FLOSS mode, in matching the functional and other
characteristics of the variety of software systems that are produced with
the needs of users in various sectors of the economy and polity, obviously,
is a matter of considerable importance that will bear upon the long-term
viability and growth of this mode of organizing production and distribu-
tion. Our larger objective, therefore, is to arrive at a parsimonious charac-
terization of the workings of FLOSS communities engaged across a number
of projects, and their collective productive performance in dimensions that
are amenable to “social welfare” evaluation. Seeking that goal will pose
further new and interesting problems for study, a number of which are
identified in the essay’s conclusion. We contend that that these too will
be found to be tractable within the framework provided by refining and
elaborating on the core (“proof of concept”) model that is presented in
this paper.

A New/Old Direction for Economic Research on the Phenomenon of
FLOSS

The initial contributions to the social science literature addressing the
FLOSS phenomenon have been directed primarily to identifying the moti-
vations underlying the sustained and often intensive engagement of many
highly skilled individuals in this noncontractual and unremunerated mode
of production.2 That focus reflects a view that widespread voluntary par-
ticipation in the creation and free distribution of economically valuable
goods is something of an anomaly, at least from the viewpoint of main-
stream microeconomic analysis. A second problem that has occupied
observers, and especially economists, is to uncover the explanation for the
evident success of products of the FLOSS mode in market competition
against proprietary software—significantly on the basis not only of their
lower cost, but their reputedly superior quality.3 This quest resembles the
first, in reflecting a state of surprise and puzzlement about the apparently
greater efficiency that these voluntary, distributed production organiza-
tions have been able to attain vis-à-vis centrally managed, profit-driven
firms that are experienced in creating “closed,” software products.

Anomalies are intrinsically captivating for intellectuals of a scientific or
just a puzzle-solving bent. Yet the research attention that has been stimu-

298 Jean-Michel Dalle and Paul A. David

lated by the rapid rise of an FLOSS segment of the world’s software-
producing activities during the 1990s owes something also to the belief
that this phenomenon and its relationship to the free and open software
movements could turn out to be of considerably broader social and eco-
nomic significance. There is, indeed, much about these developments that
remains far from transparent, and we are sympathetic to the view that a
deeper understanding of them may carry implications of a more general
nature concerning the organization of economic activities in networked
digital technology environments. Of course, the same might well be said
about other aspects of the workings of modern economies that are no less
likely to turn out to be important for human well-being.

Were the intense research interest that FLOSS software production cur-
rently attracts to be justified on other grounds, especially as a response to
the novelty and mysteriousness of the phenomena, one would need to
point out that this too is a less-than-compelling rationale; the emergence
of FLOSS activities at their present scale is hardly so puzzling or aberrant
a development as to warrant such attention. Cooperative production of
information and knowledge among members of distributed epistemic com-
munities who do not expect direct remuneration for their efforts simply
cannot qualify as a new departure. There are numerous historical precur-
sors and precedents for FLOSS, perhaps most notably in the “invisible col-
leges” that appeared among the practitioners of the new experimental and
mathematically approaches to scientific inquiry in western Europe in the
course of the seventeenth century.4 The professionalization of scientific
research, as is well known, was a comparatively late development, and, as
rapidly as it has proceeded, it has not entirely eliminated the contributions
of nonprofessionals in some fields (optical astronomy being especially
notable in this regard); communities of “amateur” comet-watchers persist,
and their members continue to score—and to verify—the occasional obser-
vational coup.

“Open science,” the mode of inquiry that became fully elaborated and
institutionalized under systems of public and private patronage during the
latter part of the nineteenth and the twentieth centuries, thus offers an
obvious cultural and organizational point of reference for observers of
contemporary communities of programmers engaged in developing free
software and open source software.5 The “communal” ethos and norms
of “the Republic of Science” emphasize the cooperative character of the
larger purpose in which individual researchers are engaged, stressing
that the accumulation of reliable knowledge is an essentially social process.
The force of its universalist norm is to render entry into scientific work

Allocation of Software Development Resources 299

and discourse open to all persons of “competence,” while a second key
aspect of “openness” is promoted by norms concerning the sharing of
knowledge in regard to new findings and the methods whereby they were
obtained.

Moreover, a substantial body of analysis by philosophers of science and
epistemologists, as well as theoretical and empirical studies in the eco-
nomics of knowledge, points to the superior efficiency of cooperative
knowledge-sharing among peers as a mode of generating additions to the
stock of scientifically reliable propositions.6 In brief, the norm of openness
is incentive compatible with a collegiate reputational reward system
based upon accepted claims to priority; it also is conducive to individual
strategy choices whose collective outcome reduces excess duplication of
research efforts, and enlarges the domain of informational complemen-
taries. This brings socially beneficial spillovers among research programs
and abets rapid replication and swift validation of novel discoveries. The
advantages of treating new findings as public goods in order to promote
the faster growth of the stock of knowledge are thus contrasted with the
requirement of restricting informational access in order to enlarge the flow
of privately appropriable rents from knowledge stocks.

The foregoing functional juxtaposition suggests a logical basis for
the existence and perpetuation of institutional and cultural separations
between two normatively differentiated communities of research practice.
The open “Republic of Science” and the proprietary “Realm of Technol-
ogy” on this view, constitute distinctive organizational regimes, each of
which serves a different (and potentially complementary) societal purpose.
One might venture farther to point out that the effective fulfilling of their
distinctive and mutually supporting purposes was for some time abetted
by the ideological reinforcement of a normative separation between the
two communities; by the emergence of a distinctive ethos of “indepen-
dence” and personal disinterestedness (“purity”) that sought to keep sci-
entific inquiry free to the fullest extent possible from the constraints and
distorting influences to which commercially oriented research was held to
be subject.

Therefore, if we are seeing something really new and different in the
FLOSS phenomenon, that quality hardly can inhere in attributes shared
with long-existing open science communities. Rather, it must be found
elsewhere; perhaps, in the sheer scale on which these activities are being
conducted, in the global dispersion and heterogeneous backgrounds of the
participants, in the rapidity of their transactions, and in the pace at which
their collective efforts reach fruition. This shift in conceptualization has

300 Jean-Michel Dalle and Paul A. David

the effect of turning attention to a constellation of technical conditions
whose coalescence has especially affected this field of endeavor. Consider
just these three: the distinctive immateriality of “code,” the great scope
for design modularity in the construction of software systems, and the
enabling effects of advances in digital (computer-mediated) telecommuni-
cations during the past several decades. Although it might be thought that
the intention here is merely to portray the historically unprecedented fea-
tures of the FLOSS movements as primarily an “Internet phenomenon,”
we have something less glib than that in mind.

It is true that resulting technical characteristics of both the work-product
and the work-process alone cannot be held to radically distinguish the cre-
ation of software from other fields of intellectual and cultural production
in the modern world. Nevertheless, they do suggest several respects in
which it is misleading to interpret the FLOSS phenomenon simply as
another subspecies of “open science.” The knowledge incorporated in soft-
ware differs in at least two significant respects from the codified knowl-
edge typically produced by scientific work groups. Computer software is
“technology” (with a small “t”), which is to say that it becomes effective
as a tool immediately, without requiring further expenditures of effort
upon development. This immediacy has significant implications not only
at the microlevel of individual motivation, but for the dynamics of col-
lective knowledge-production. Indeed, because software code is “a machine
implemented as text,” its functionality is peculiarly self-exemplifying.
Thus, “running code” serves to short-circuit many issues of “authority”
and “legitimation” that traditionally have absorbed much of the time
and attention of scientific communities, and to radically compress the
processes of validating and interpreting new contributions to the stock
knowledge.7

In our view, FLOSS warrants systematic investigation in view of a par-
ticular historical conjuncture; indeed, a portentous constellation of trends
in the modern economy. The first trend is that information-goods that
share these technical properties are moving increasingly to the center of
the stage as drivers of economic growth. The second is that the enabling
of peer-to-peer organizations for information distribution and utilization
is an increasingly obtrusive consequence of the direction in which digital
technologies are advancing. Third, the “open” (and cooperative) mode of
organizing the generation of new knowledge has long been recognized to
have efficiency properties that are much superior to institutional solutions
to the public goods problem, which entail the restriction of access to infor-
mation through secrecy or property rights enforcement. Finally, and of

Allocation of Software Development Resources 301

practical significance for those who seek to study it systematically, the
FLOSS mode of production itself is generating a wealth of quantitative
information about this instantiation of “open epistemic communities.”
This last development makes FLOSS activities a valuable window through
which to study the more generic and fundamental processes that are
responsible for its power, as well as the factors that are likely to limit its
domain of viability in competition with other modes of organizing eco-
nomic activities.

Consequently, proceeding from this reframing of the phenomenon, we
are led to a conceptual approach that highlights a broader, ultimately more
policy-oriented set of issues than those which hitherto have dominated
the emerging economics literature concerning FLOSS. A correspondingly
reoriented research agenda is needed. Its analytical elements are in no way
novel, though, but merely newly adapted to suit the subject at hand. It is
directed to answering a fundamental and interrelated pair of questions:
First, by what mechanisms do FLOSS projects mobilize the human
resources, allocate the participants’ diverse expertise, coordinate the con-
tributions, and retain the commitment of their members? Second, how
fully do the products of these essentially self-directed efforts meet the long-
term needs of software users in the larger society, and not simply provide
satisfactions of various kinds for the developers? These will be recognized
immediately by economists to be utterly familiar and straightforward—
save for not yet having been explicitly posed or systematically pursued in
this context.

Pursuing these questions in more concrete terms brings one immediately
to inquire into the workings of the system that actually allocates software
development resources among various software systems and applications
when the production of code takes place in a distributed community of
volunteers, as it does in the FLOSS regime. How does the ensemble of devel-
opers collectively “select” among the observed array of projects that are
launched, and what processes govern the mobilization of sufficient
resource inputs to enable some among those to attain the stage of func-
tionality and reliability that permits their being diffused into wider use—
that is to say, use beyond the circle of programmers immediately engaged
in the continuing development and debugging of the code itself?

Indeed, it seems only natural to expect that economists would provide
an answer to the question of how, in the absence of directly discernible
market links between the producing entities and “customers,” the output
mix of the open source sector of the software industry is determined. Yet,
to date, the question does not appear to have attracted any significant

302 Jean-Michel Dalle and Paul A. David

research attention. This curious lacuna, moreover, is not a deficiency pecu-
liar to the economics literature, for it is notable also in the writings of
some of the FLOSS movement’s pioneering participants and popular expo-
nents.8 Although enthusiasts have made numerous claims regarding the
qualitative superiority of products of the open source mode, when these
are compared with software systems tools and applications packages devel-
oped by managed commercial projects, scarcely any attention is directed
to the issue of whether the array of completed OS/FS projects also is
“better” or “just as good” in responding to the varied demands of software
users.

It is emblematic of this gap that the metaphor of “the bazaar” was chosen
by Eric S. Raymond (2001) to convey the distinctively unmanaged, decen-
tralized mode of organization that characterizes open source software
development projects—despite the fact that the bazaar describes a mode
of distribution, not of production. Indeed, the bazaar remains a peculiar
metaphor for a system of production: the stalls of actual bazaars typically
are retail outlets, passive channels of distribution rather than agencies with
direct responsibility for the assortment of commodities that others have
made available for them to sell. Given the extensive discussion of the
virtues and deficiencies of the bazaar metaphor that was stimulated by
Raymond, it is rather remarkable that the latter’s rhetorical finesse of the
problem of aligning the activities of producers with the wants of users
managed to pass with scarcely any comment.

In contrast, the tasks we have set for ourselves in regard to FLOSS rep-
resent an explicit return to the challenge of providing nonmetaphorical
answers to the classic economic questions of whether and how this
instance of a decentralized decision resource allocation process could
achieve coherent and socially efficient outcomes. What makes this an espe-
cially interesting problem, of course, is the possibility of assessing the
extent to which institutions of the kind that have emerged in the free soft-
ware and open source movements are enabling them to accomplish that
outcome—without help either from the “invisible hand” of the market
mechanism driven by price signals, or the “visible hands” of centralized
managerial hierarchies.9 Responding to this challenge requires that the
analysis be directed towards ultimately providing a means of assessing the
social optimality properties of the way “open science,” “open source,” and
kindred cooperative communities organize the production and regulate the
quality of the information tools and goods—outputs that will be used not
only for their own, internal purposes, but also by others with quite differ-
ent purposes in the society at large.

Allocation of Software Development Resources 303

The General Conceptual Approach: Modeling FLOSS Communities at
Work

The parallels that exist between the phenomena of “open source” and
“open science,” to which reference already has been made, suggests a
modeling approach that builds on the generic features of nonmarket
social interaction mechanisms. These processes involve feedback from
the cumulative results of individual actions, and thereby are capable of
achieving substantial coordination and coherence in the collective per-
formance of the ensemble of distributed agents. This approach points
in particular to the potential significance of the actors’ consciousness of
being “embedded” in peer reference groups, and therefore to the to role
of collegiate recognition and reputational status considerations as a source
of systematic influence directing individual efforts of discovery and
invention.

Consequently, our agent-based modeling framework has been structured
with a view to its suitability for subsequent refinement and use in inte-
grating and assessing the significance of empirical findings—including
those derived from studies of the microlevel incentives and social norms
that structure the allocation of software developers’ efforts within partic-
ular projects and that govern the release and promotion of software code.
While it does not attempt to mimic the specific features of collegiate rep-
utational reward systems such as are found in the Republic of Science, it
is clear that provision eventually should be made to incorporate functional
equivalents of the conventions and institutions governing recognized
claims to scientific “priority” (being first), as well as the symbolic and
other practices that signify peer approbation of exemplary individual
performance.

The systems analysis approach familiar in general equilibrium econom-
ics tells us that within such a framework we also should be capable of
asking how the norms and signals available to microlevel decision-makers
in the population of potential participants will shape the distribution of
resources among different concurrent projects, and direct the attention of
individual and groups to successive projects. Their decisions in that regard
will, in turn, affect the growth and distribution of programmers’ experience
with the code of specific projects, as well as the capabilities of those who
are familiar with the norms and institutions (for example, software licens-
ing practices) of the FLOSS regime. Obviously, some of those capabilities
are generic and thus would provide potential “spillovers” to other areas of
endeavour—including the production of software goods and services by

304 Jean-Michel Dalle and Paul A. David

commercial suppliers. From this point it follows that to fully understand
the dynamics of the FLOSS mode and its interactions with the rest of the
information technology sector, one cannot treat the expertise of the soft-
ware development community as a given and exogenously determined
resource.

It should be evident from the foregoing discussion that the task upon
which we are embarked is no trivial undertaking, and that to bring it to
completion we must hope that others can be drawn into contributing to
this effort. We report here on a start towards that goal: the formulation of
a highly stylized dynamic model of decentralized, microlevel decisions that
shape the allocation of FLOSS programming resources among project tasks
and across distinct projects, thereby generating an evolving array of FLOSS
system products, each with its associated qualitative attributes. In such
work, it is hardly possible to eschew taking account of what has been
discovered about the variety prospective rewards—both material and
psychic—that may be motivating individuals to write free and open source
software. For, it is only reasonable to suppose that these may influence
how they allocate their personal efforts in this sphere.

At this stage, it is not necessary to go into great detail on this matter,
but among the many motives enumerated, it is relevant to separate out
those involving what might be described as “independent user-
implemented innovation.”10 Indeed, this term may well apply to the great
mass of identifiably discrete projects, because a major consideration driving
many individuals who engage in the production of open source would
appear to be the direct utility or satisfaction they expect to derive by using
their creative outputs.11 The power of this motivating force obviously
derives from the property of immediate efficacy, which has been noticed
as a distinctive feature of computer programs. But, no less obviously, this
force will be most potent where the utilitarian objective does not require
developing a large and complex body of code, and so can be achieved quite
readily by the exertion of the individual programmer’s independent efforts.
“Independent” is the operative word here, for it is unlikely that someone
writing an obscure driver for a newly marketed printer that he wishes to
use will be at all concerned about the value that would be attached to this
achievement by “the FLOSS community.” The individuals engaging in this
sort of software development might use open source tools and regard them-
selves as belonging in every way to the free software and open source
movements. Nevertheless, it is significant that the question of whether
their products are to be contributed to the corpus of nonproprietary soft-
ware, rather than being copyright-protected for purposes of commercial

Allocation of Software Development Resources 305

exploitation, really is one that they need not address ex ante. Being essen-
tially isolated from active collaboration in production, the issue of the dis-
position of authorship rights can be deferred until the code is written.

That is an option that typically is not available for projects that con-
template enlisting the contributions of numerous developers, and for
which there are compelling reasons to announce a licensing policy at the
outset. For all intents and purposes, “independent”, or I-mode software
production activity stands apart from the efforts that entail participation
in collective developmental process, involving successive releases of code
and the cumulative formation of a more complex, multifunction system.
We will refer to the latter as FLOSS production in community-mode or, for
convenience C-mode, contrasting it with software production in I-mode.
Since I-mode products and producers almost by definition tend to remain
restricted in their individual scope and do not provide as direct an expe-
rience of social participation, the empirical bases for generalizations about
them is still very thin; too thin, at this point, to support interesting model-
building. Consequently, our attention here focuses exclusively upon cre-
ating a suitable model to simulate the actions and outcomes of populations
of FLOSS agents that are working in C-mode.

It would be a mistake, however, to completely conflate the issue of the
sources of motivation for human behavior with the separable question of
how individuals’ awareness of community sentiment and their receptivity
to signals transmitted in social interactions serve to guide and even con-
strain their private and public actions; indeed, even to modify their man-
ifest goals. Our stylized representation of the production decisions made
by FLOSS developers’ therefore does not presuppose that career consider-
ations of “ability signaling,” “reputation-building,” and the expectations
of various material rewards attached thereto, are dominant or even suffi-
cient motivations for individuals who participate in C-mode projects.
Instead, it embraces the weaker hypothesis that awareness of peer-group
norms significantly influences (without completely determining)
microlevel choices about the individuals’ allocation of their code-writing
inputs, whatever assortment of considerations may be motivating their
willingness to contribute those efforts.12

Our model-building activity aims eventually to provide more specific
insights not only into the workings of FLOSS communities, but also into
their interaction with organizations engaged in proprietary and “closed
mode” software production. It seeks to articulate the interdependences
among distinct subcomponents of the resource allocation system, and to
absorb and integrate empirical findings about microlevel mobilization and

306 Jean-Michel Dalle and Paul A. David

allocation of individual developer efforts both among projects and within
projects. Stochastic simulation of such social interaction systems is a pow-
erful tool for identifying critical structural relationships and parameters
that affect the emergent properties of the macro system. Among the latter
properties, the global performance of the FLOSS mode in matching the
functional distribution and characteristics of the software systems pro-
duced to the evolving needs of users in the economy at large, obviously is
an issue of importance for our analysis to tackle.

It is our expectation that in this way, it will be feasible to analyze some
among the problematic tensions that may arise been the performance of
a mode of production guided primarily by the internal value systems of
the participating producers, and that of a system in which the reward struc-
ture is tightly coupled by managerial direction to external signals deriving
from the satisfaction of end-users’ wants. Where the producers are the end-
users, of course, the scope for conflicts of that kind will be greatly cir-
cumscribed, as enthusiasts for “user-directed innovation” have pointed
out.13 But the latter solution is likely to serve the goal of customization
only by sacrificing some of the efficiencies that derive from producer spe-
cialization and division of labor. The analysis developed in this paper is
intended to permit investigations of this classic trade-off in the sphere of
software production.

Behavioral Foundations for C-Mode Production of Software
An important point of departure for our work is provided by a penetrat-
ing discussion of the operative norms of knowledge production within
FLOSS communities that appears in Eric Raymond’s less widely cited
essay “Homesteading the Noosphere” (Raymond 2001, 65–111).14 Within
the “noosphere”—the “space” of ideas, according to Raymond—software
developers allocate their efforts according to the relative intensity of the
reputation rewards that the community attaches to different code-writing
“tasks.” The core of Raymond’s insights is a variant of the collegiate repu-
tational reward system articulated by sociological studies of open science
communities: the greater the significance that peers would attach to the
project, to the agent’s role, and the greater is the extent or technical crit-
icality of his or her contribution, the greater is the “reward” that can be
anticipated.

Caricaturing Raymond’s more nuanced discussion, we stipulate that (a)
launching a new project is usually more rewarding than contributing to
an existing one, especially when several contributions have already been
made; (b) early releases typically are more rewarding than later versions of

Allocation of Software Development Resources 307

project code; (c) there are some rewarding projects within a large software
system that are systematically accorded more “importance” than others.
One way to express this is to say that there is a hierarchy “peer regard,” or
reputational significance, attached to the constituents elements of a family
of projects, such that contributing to the Linux kernel is deemed a (poten-
tially) more rewarding activity than providing Linux implementation of
an existing and widely used applications program, and the latter domi-
nates writing an obscure driver for a newly marketed printer.

To this list we would append another hypothesized “rule”: (d) within
each discrete project, analogously, there is hierarchy of peer-regard that
corresponds with (and possibly reflects) differences in the structure of
mesolevel technical dependences among the “modules” or integral “pack-
ages” that constitute that project. In other words, we postulate that there
is lexicographic ordering of rewards based upon a discrete, technically
based “treelike” structure formed by the successive addition of project com-
ponents. Lastly, for present purposes, it can be assumed that (e) new pro-
jects are created in relation to existing ones, so that it always is possible to
add a new module in relation to an existing one, to which it adds a new
functionality. The contribution made by initiating this new module (being
located one level higher in the tree) will be accorded less significance than
its counterparts on the structure’s lower branches.

Thus, our model postulates that the effort-allocation decisions of agent’s
working in C-mode are influenced (inter alia) by their perceptions con-
cerning the positioning of the project’s packages in a hierarchy of peer
regard; and further stipulates that the latter hierarchy is related to the struc-
ture of the technical interdependences among the modules.

For present purposes, it is not really necessary to specify whether depen-
dent or supporting relationships receive the relatively greater weight in this
“calculus of regard.” Still, we will proceed on the supposition that modules
that are more intensely implicated by links with other packages that
include “supportive” connections reasonably are regarded as “germinal” or
“stem” subroutines15 and therefore may be depicted as occupying positions
towards the base of the treelike architecture of the software project. Assum-
ing that files contributed to the code of the more generic among the
modules, such as the kernel or the memory manager of an operating
system (e.g., Linux), would be called relatively more frequently by other
modules might accord them greater “criticality”; or it might convey greater
notice to the individual contributor that which would apply in the case of
contributions made to modules having more specialized functions, and
whose files were “called” by relatively few other packages.

308 Jean-Michel Dalle and Paul A. David

For the present purposes, Raymond’s rules can be restated as holding
that: (1) there is more “peer regard” to be gained by a contribution made
to a new package than by the improvement of existing packages; (2) in
any given package, early and radically innovative contributions are more
rewarded than later and incremental ones; (3) the lower level and the more
generic a package, the more easily a contribution will be noticed, and
therefore the more attractive a target it will be for developers. Inasmuch
as “contributions” also are acknowledged by Raymond as correcting “bugs
of omission,” each such contribution—or “fix”—is a patch for a “bug,” be
it a simple bug, an improvement, or even a seminal contribution to a new
package. Therefore every contribution is associated with a variable
expected payoff that depends on its nature and “location.”16

The decision problem for developers is then to choose which “bug” or
“problem” will occupy their attention during any finite work interval. We
find here another instance of the classic “problem of problem choice” in
science, which the philosopher Charles S. Pierce (1879) was the first to for-
malise as a microeconomic decision problem. But we need not go back to
the static utility calculus of Pierce. Instead, we can draw upon the graph-
theoretic model that more has recently been suggested by Carayol and
Dalle’s (2000) analysis of the way that the successive choices of research
agendas by individual scientists can aggregate into collective dynamic pat-
terns of knowledge accumulation. The latter modelling approach is a quite
suitable point of departure, precisely because of the resemblance between
the reputation game that Raymond (2001) suggests is played by open
source software developers and behavior of open science researchers in
response to collegiate reputational reward systems, as described by Das-
gupta and David (1994). Although we treat agents’ “problem choices” as
being made independently in a decentralised process, they are nonethe-
less influenced by the context that has been formed by the previous effort-
allocating decision of the ensemble of researchers. That context can be
represented as the state of the knowledge structure accumulated, in a geo-
logical manner, by the “deposition” of past research efforts among a variety
of “sites” in the evolving research space—the “noosphere” of Raymond’s
metaphor of a “settlement” or “homesteading” process.

A Simulation Model of OS/FS C-Mode Production

Our approach conceptualizes the macrolevel outcomes of the software
production process carried on by an FLOSS community as being qualita-
tively oriented by the interplay of successive individual effort-allocating

Allocation of Software Development Resources 309

decisions taken members of a population of developers whose expected
behaviors are governed by “norms” or “rules” of the sort described by
Raymond.17 The allocation mechanism, however, is probabilistic rather
than deterministic—thereby allowing for the intervention of other influ-
ences affecting individual behavior. So far as we are aware, there exist no
simple analytical solutions characterizing limiting distributions for the
knowledge structures that will result from dynamic nonmarket processes
of this kind. That is why we propose to study software production in the
open source mode by numerical methods, using a dynamic stochastic
(random-graph) model.

In this initial exploratory model, briefly described, at any given moment
a particular FLOSS development “agent” must choose how to allocate a
fixed level of development effort—typically contributing new functionali-
ties, correcting bugs, and so on—to one or another among the alternative
“packages” or modular subsystems of a particular project. The alternative
actions available at every such choice-point also include launching a new
module within the project.18 Agents’ actions are probabilistic and condi-
tioned on comparisons of the expected nonpecuniary or other rewards
associated with each project, given specifications about the distribution of
their potential effort endowments.19

We consider that open source developers have different effort endow-
ments, evaluated in thousands of lines of code (KLOC), and normalized
according to individual productivities. The shape of the distribution of
effort endowments, strictly speaking, cannot be inferred immediately from
the (skewed) empirical distribution of the identified contributions mea-
sured in lines of code, but one can surmise that the former distribution
also is left-skewed—on the basis of the relative sizes of the “high-activity”
and “low-activity” segments of the developer population found by various
surveys, and notably the FLOSS survey (Ghosh et al. 2002). This feature is
in line with the most recent surveys, which have stressed that most open
source contributors engage in this activity on a part-time, unpaid basis.20

The effort endowment of individuals at each moment in time is therefore
given here by an exponential distribution; that is, smaller efforts will be
available for allocation with higher probability. Namely, efforts, denoted
by a, are generated according to the following inverted cumulative density
function:

(1.1)

where p Œ [0;1] and d is a constant.

a
d

= - -()1
1ln p

310 Jean-Michel Dalle and Paul A. David

Effort endowments measure how many KLOC a given hacker can either
add or delete in the existing code, as a common measure of changes of
source code in computer science is indeed not only with lines added, but
also with lines deleted to account better for the reality of development
work, bug correction, and code improvement: therefore it is a question
of spending developer time (writing lines of code) on a given project
(module).

Then, as we have argued (previously) we consider that all the modules,
taken together, are organized as in a tree that grows as new contributions
are added, and that can grow in various ways depending on which part of
it (low or high level modules, notably) developers select. To simulate the
growth of this tree and the creation of new modules, we attach a virtual
(potential) new node (module, package) to each existing one at a lower
level and starting with version number 0: each virtual module represents
an opportunity to launch a new project that can be selected by a devel-
oper, and become a real module with a nonzero version number. Figure
16.1 gives a symbolic representation of the growth process (represented
bottom-up) and of the creation of new modules where dashed lines and
circles stand for virtual nodes (potential new software packages). Figure
16.2 presents an example of a software tree whose growth (again repre-
sented bottom-up) was generated by the stochastic simulation model,
where numbers associated with each module precisely account for ver-
sions: indeed, we further consider that, for each module, its version
number, denoted by v and indexed here by its distance to the root module
d, is a good proxy to account for its performance, and that this version
number increases nonlinearly with the sum of total KLOC added and
deleted, here denoted by x, according to:

(1.2)

where m is a characteristic exponent and d is the distance of the module
to the germinal or stem module of the project tree. Further, without loss
of generality, we choose the normalization that sets the distance of the
stem module itself to be 1. As d ≥ 1, the specification given by equation
1.2 further implies that it is easier to improve versions for low-level
modules than for those at higher levels.21

Then developers allocate their individual effort endowments at every
(random) moment in order to maximise the expected reputation-benefit
that it will bring, considering each possible bug that is available to be cor-
rected—or each new project to be founded (“bug of omission”).22 We
suppose that the cumulative expected23 reward (private value) for each

v x xdd () = +()log 1 m

Allocation of Software Development Resources 311

existing and potential new project, denoted by r and also indexed by dis-
tance d to the root module, is a function of the version number, and there-
fore an increasing function of the cumulative efforts measured in KLOC,
but also that initial contributions are evaluated as rewarding as long as
they are above a given threshold.

(1.3)

(1.4)

Here nq stands as a release “threshold” below which no reward is there-
fore gained by developers: this threshold accounts for the existence of a
norm according to which releasing early is more or less encouraged in

r x whenever v x vd d() = () £0 q .

r x v x dd d() = () - l

312 Jean-Michel Dalle and Paul A. David

Figure 16.1
The upwards-evolving tree; a figurative representation of a software system’s growth

process

Allocation of Software Development Resources 313

0.92 0.15 0.2 0.04 0.15 0.78

0.93 1.22 0.23 0.2 0.06 0.13 0.26 0.2

1.320.48 0.37 0.76

0.870.52 0.59

1.21 1.41 1.47 1.02

2.41

0.89 0.39

1.03 1.13

0.29

0.81

2.33

0.89

1.03 0.81

2.21

0.89

0.68 0.02

1.97

0.08 0.42

0.39

0.66 0.54

0.29

1.6

0.29

Figure 16.2
Typical simulation of a software project growth process

FLOSS communities.22 Namely, it can be rewarding to release projects
before they are functioning—developers can get “credits” for quite early
releases—as it is assumed to be socially efficient because it is a way to attract
other developers: an assumption that we will analyze later in this chapter,
and to which we will in fact try to give a better analytical ground.

Note also that in equation 1.3 the reward depends on the height of
the project in the software tree—the lower the package, the higher the
expected reward, according to a power law of characteristic exponent l ≥
0,25 according to the behavioral foundations of FLOSS community norms
as we have abstracted them.

Each existing and potential project is thus associated with an expected
payoff depending on its location in the software tree, on its current level
of improvement (possibly 0), and on individual efforts. More precisely, the
expected payoff, denoted by r, which corresponds for any given developer
to spending its (entire) effort endowment a working on (existing) module
m, located at distance d from the root, and whose current level of improve-
ment is x, is:

(1.5)

We suppose that each developer computes the expected rewards associ-
ated with each of the nodes according to this last formula and his/her own
effort endowment, but also taking into account the rewards associated
with the launching of new projects. According to the growth algorithm
described earlier, there is simply one possible new activity—which would
correspond to the creation of a new module—for each existing package in
the global project tree. Numerically, this is strictly analogous to comput-
ing the expected reward of “virtual” nodes located as a “son” of each exist-
ing node, whose distance to the root module is therefore the distance of
the “parent” node plus 1, and whose version and total KLOC are initially
0. Then the expected reward, denoted by r¢, and associated with launch-
ing a new project as a “son” of node m with effort a is given by:

(1.6)

We translate these payoffs into a stochastic “discrete choice” function,
considering further that there are nonobservable levels of heterogeneity
among developers, but that their choice will on average be driven by these
expected payoffs. Then:

(1.7)
P chosen module module m

m

i i
i virtual son to the root module

number of modules

i root module

number of modules=() =
()

() + ¢()
= ()= ()

ÂÂ
r

r r
11

r a¢() = ()+m rd 1

r am r x r xd d() = +() - ()

314 Jean-Michel Dalle and Paul A. David

Our goal then is to examine what pattern of code generation emerges
from this system, and how sensitive its morphology (software-tree forms)
is to parameter variation; that is, to variations of the rewards given by the
value system of the FLOSS-hacker’s ethos, and simply to the demography
of the population of hackers. The obvious trade-offs of interest are those
between intensive effort being allocated to the elaboration of a few “leaves”
(modules) which may be supposed to be highly reliable and fully elabo-
rated software systems whose functions in each case are nonetheless quite
specific, and the formation of an “dense canopy” containing a number and
diversity of “leaves” that typically will be less fully developed and less thor-
oughly “debugged.”

We therefore focus on social utility measurements according to the fol-
lowing basic ideas:

1. Low-level modules are more valuable than high-level ones simply
because of the range of other modules and applications that eventually can
be built upon them.
2. A greater diversity of functionalities (breadth of the tree at the lower
layers) is more immediately valuable because it provides software solutions
to fit a wider array of user needs.
3. Users value greater reliability, or the absence of bugs, which is likely to
increase as more work is done on the code, leading to a higher number of
releases. Releases that carry higher version numbers are likely to be
regarded as “better” in this respect.26

We capture these ideas according to the following simple27 “social
utility” function:

(1.8)

where n Œ [0; 1] and j ≥ 0 are characteristic exponents; that is, both can
vary independently to allow for various comparative weights of improve-
ment, measured by version numbers, and specialization of modules, mea-
sured by distance to the root module, in social utility.

Emergent Properties

Preliminary results28 tend to stress the social utility of developer commu-
nity “norms” that accord significantly greater reputational rewards for
adding, and contributing to the releases of low level modules. Figure 16.3
presents the typical evolution of social utility with various values of l

u v m dd
v

m

modules

= + ()() -[]
()

-Â 1 1 x

Allocation of Software Development Resources 315

(efficiencies are averaged over 10 simulation runs, while other parameters
remain similar—d = 3 m = 0.5 n = 0.5 x = 2).29 According to these results,
the social utility of software produced increases with l—i.e., with stronger
community norms—because lower modules are associated with higher
rewards, compared to higher ones when l increases according to the pre-
vious equations.

Further, our preliminary explorations of the model suggest that policies
of releasing code early tend to generate tree-shapes that have higher social
utility scores. Then figure 16.4 gives the evolution of social utility depend-
ing on nq (here, utilities are averaged over simply five simulation runs,
while d = 3 m = 0.5 n = 0.5 x = 2 l = 2).30

316 Jean-Michel Dalle and Paul A. David

3210.5 1.5 2.5
l

S
o

ci
al

 U
ti

lit
y

Figure 16.3
Typical evolution of social utility with various values of l

10.50 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

S
o

ci
al

 U
ti

lit
y

Release Threshold

Figure 16.4
The evolution of social utility depending on nq

The intuitively plausible interpretation of this last finding is that early
releases create bases for further development, and are especially important
in the case of low-level modules, as they add larger increments to social
utility. The reputational reward structure posited in the model encourages
this roundabout process of development by inducing individual efforts to
share the recognition for contributing to code, and notably to low level
code. Figure 16.5 brings some rather conclusive evidence in favor of this
explanation by displaying the number of modules at “level 2,”; that is, at
distance 1 from the kernel (“germinal” or “stem”) module.

When developers get rewarded for very early releases of modules (lower
release threshold), the number of lower modules (here at level 2, or at dis-
tance 1 from the root module) increases significantly; lower-level modules
get created. Indeed, and to go one step further, we suggest that early
releases of low-level modules could be considered seminal, according to an
expression often used to characterize important and initial scientific con-
tributions (articles), meaning that these contributions, however limited,
create subsequent and sufficient opportunities for other developers to earn
reward by building on them. That is specially true at lower levels, because
expected rewards for subsequent contributions are sufficiently high to
attract further developers.

This points to the functional significance of one of the strategic rules—
“release early” and “treat your users as co-developers”—that Raymond has
put forward for open source development, in the classic exposition, The
Cathedral and the Bazaar (2001). As Raymond himself puts it:

Allocation of Software Development Resources 317

0
2
4
6
8

10
12
14
16
18
20

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Release Threshold

N
u

m
b

er
 o

f
M

o
d

u
le

s
at

 L
ev

el
 2

Figure 16.5
The number of modules at “level 2”

[Treating your users31 as co-developers] The power of this effect is easy to underes-

timate. . . . In fact, I think Linus [Torvalds]’s cleverest and most consequential hack

was not the construction of the Linux kernel itself, but rather his invention of the

Linux development model. When I expressed this opinion in his presence once, he

smiled and quietly repeated something he has often said: “I’m basically a very

lazy person who likes to get credit for things other people actually do.” (Raymond

2001, 27)

By this, we can understand the mechanism for eliciting seminal contri-
butions—that is, of early release and attraction of codevelopers—to operate
in the following way: rewarding early release, and allowing others to build
upon it, does not simply create a sufficiently rewarding opportunity for
potential codevelopers to be attracted, but also brings extra reward to the
individual who has disclosed a seminal work. Here, at least for low-level
modules, interdependent expected rewards are such that they create incen-
tives for what Raymond (2001, 27) calls “loosely-coupled collaborations
enabled by the Internet”—that is to say, for cooperation in a positive-sum
game, positive both for the players and for social efficiency. In a sense, and
at a metalevel, Linus Torvalds’s seminal contribution was not only the
kernel, but a new method of software development, which was indeed new
and different from the more classical methods that had previously been
supported by the FSF for most GNU tools (Raymond 2001, 27 and 29).
Once again:

Linus (Torvalds) is not (or at least, not yet) an innovative genius of design in

the way that, say, Richard Stallman or James Gosling (of NeWS and Java) are.

Rather, Linus seems to me to be a genius of engineering and implementation, with

. . . a true knack for finding the minimum-effort path from point A to point B. . . .

Linus was keeping his hackers/users constantly stimulated and rewarded—stimu-

lated by the prospect of having an ego-satisfying piece of the action, rewarded by

the sight of constant (even daily) improvement in their work. (Raymond 2001,

29–30)

The price to be paid for implementing such an early release scheme is,
of course, that the higher number of modules being created come at the
sacrifice of lower-level versions that might have been produced with equiv-
alent levels of efforts. Figure 16.6 presents the evolution of the version of
the kernel, of the average version of level 2 modules, and of the average
version of the modules over the entire software tree depending on the
release threshold nq (same parameter values, still averaged over five simu-
lation runs).

318 Jean-Michel Dalle and Paul A. David

Conclusion and To-Do List

Although there are clearly many things to be improved in this very pre-
liminary attempt to model the workings of FLOSS communities, we hope
that we might have brought some preliminary indications about the kind
of insights such a tool might provide to observers and practitioners of
FLOSS. We have notably suggested that strong reputational community
norms foster a greater social utility of software produced, and also sug-
gested some preliminary evidence in favor of the empirical “release early”
rule, and tried to provide a more general rationale for early release poli-
cies—although there can be some drawbacks in terms of code robustness,
for instance.

As a consequence of these findings, we have opted for an early release
of our work on this topic: in a sense, one should look at all the footnotes
in the former sections not only as disclaimers about the preliminary nature
of our attempts, but also as opportunities for improvement and for code-
velopment of our model. Although we certainly “commit” to do part of
this job, we are also convinced that, considering the complexity of FLOSS
communities, we need to harness significant effort to develop a proper
model of FLOSS communities.

Allocation of Software Development Resources 319

4.00

3.50

3.00

2.50

2.00

1.5

1.00

0.50

0.00

Ve
rs

io
n

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Release Threshold

Kernel
Level 2
Entire Tree

Figure 16.6
The evolution of the version of the kernel

In this respect, and standing as a temporary conclusion, let us briefly
summarize for now at least part of the to-do list of features that should be
added to the model:

Microbehaviors Clearly, the behavior of developers (contributors) thus far
is caricatured as myopic and, more seriously, still lacks several important
dynamic dimensions. First, learning is missing: as a matter of fact, acquir-
ing the skills to debug a particular module, or to add new functionalities
to it, is not costless. But the model does not make allowance for these
“start-up” costs, which would affect decisions to shift attention to a new
package of code in the project. Secondly, instead of choosing how to apply
their currently available “flow” development inputs (code-writing time, in
efficiency units) among alternative “modules,” developers might consider
aggregating their efforts by working offline over a longer interval. Intertem-
poral investment strategies of this sort would permit individuals to make
a larger, and possibly more significant, contribution to a module and
thereby garner greater peer-recognition and rewards.32 Thirdly, and perhaps
most obviously, the model in its presently simplified form abstracts entirely
from behavioral heterogeneities. The latter could derive from the variety
of motivations affecting the effort that developers are willing to devote to
the community project, or to differences in preferences for writing code,
as distinct from engaging in newsgroup discussions with other contribu-
tors. But, as we have modelled effort in efficiency units (KLOCs per period),
differences in innate or acquired skill among contributors also would con-
tribute to generating a (changing) distribution of input capacities in the
developer population. The convolution of that distribution with the dis-
tribution of motivational intensities would then have to be considered by
the simulation model when a “potential developer” is drawn at random
from the population, for interindividual differences in the extent of the
(effective) “endowment” would influence the (simulated) pattern of
microbehaviors.

Release Policies Release policies can be viewed as reflecting the gover-
nance structure of a project and therefore treated as a “predetermined”
variable, or “fixed effect” that potentially distinguishes one project from
another.33 Such policies can be viewed as a factor influencing the distrib-
ution of developer efforts among different FLOSS projects, and thereby
affecting their relative advance toward maturity. But, as differences among
the operating rules followed by maintainers of different modules within a
complex project would create de facto local policy variations release rules,

320 Jean-Michel Dalle and Paul A. David

this too can be incorporated by the model among the set of conditions
affected the internal allocation of developers’ contributions. Global release
policies, affected by how accessible the project’s code is to users through
one or more for-profit and nonprofit “distributions” of its code, constitutes
yet another important aspect of performance. This may affect both per-
ceived reliability, market adoption, and so feed back to influence the
project’s success in mobilizing supporting resources both within the devel-
oper community and from external sources.

Willingness to Contribute to Different Projects As has been noted, devel-
opers might have variable effort endowments, depending, for instance, on
the global shape of a project, or on other variables such as its market share,
release policies, licensing schemes, and so on. The varying profiles formed
by the latter characteristics of projects, together with their effects in
eliciting developers’ individual inputs, will affect the allocation of devel-
opment resources among the different software projects that coexist and
the new ones that are being launched. That represents a key “supply side”
determinant of the evolving population of projects. But the positioning
the of projects in the “software systems product space,” and in particular
their relationship to current projects that are intended as product substi-
tutes, is another aspect of the dynamics of resource allocation in the devel-
oper community at large. It will therefore be important to extend the
model in this direction, by defining the dimensions of the “product space”;
only when “categories can be represented” will it become possible to sim-
ulate the effects of what Raymond (2001) describes as “category killers”—
project trees, in our metaphor, that block the sunlight and absorb the
nutrients in the area around them, preventing other project trees from
establishing themselves there.

Users End-users have not really been implemented yet in the model, save
for the fact that developers are assumed to be also users, in that they know
what the bugs (actual ones, and bugs of omission) are! Users are likely, as
a group, to have different preferences from developers; for instance, being
disposed to grant more weight to reliability rather than to the range of
functionalities embedded in a single program. Furthermore, some devel-
opers (some communities?) may be more strongly motivated than others
to work on “popular” projects—that is, by projects that are able to attract
users from the general, inexpert population by fulfilling their working
requirement, affording network compatibilities with coworkers, being
properly distributed.34 Again, it would be appropriate for the model to

Allocation of Software Development Resources 321

represent such considerations and, by allowing for alternative distributions
of developer attitudes, to investigate their potential impacts upon the
pattern of FLOSS project development.

Sponsorship Sponsorship, and more generally, symbiotic relationships
with commercial entities of various kinds (ancillary service companies,
editors of complementary commercial application packages, even propri-
etary software vendors), can influence FLOSS development by adding and
directing efforts. This influence can take a variety of forms, ranging from
commercial distribution of FLOSS-based products to hiring prominent
developers and letting them contribute freely to selected open-source
projects. The interaction with complementary enterprises in the software
systems and services sector, therefore, will have to be modelled along
with the direct competition between the underlying FLOSS code and the
products of commercial vendors of proprietary software and bundled
services.

Authority and Hierarchies In a sense, the reputation rewards associated
with contributing to the development of a project are obtained only if the
developers’ submitted “patches” are accepted by the module or project
maintainer. Rather than treating the latter’s decisions as following simple
“gate-keeping” (and “bit-keeping”) rules that are neutral in regard to the
identities and characteristics of the individual contributors, it may be
important to model the acceptance rate as variable and “discriminating”
on the basis of the contributing individuals’ experience or track records.
This approach would enable the model to capture some features of the
process of “legitimate peripheral participation” through which developers
are recruited. Modules towards the upper levels in the tree, having fewer
modules calling them, might be represented as requiring less experience
for a given likelihood of acceptance. Comparative neophytes to the FLOSS
community (newbies) thus would have incentives to start new modules or
contribute to existing ones at those levels, but over time, with the accu-
mulation of a track record of successful submissions, would tend to migrate
to lower branches of new trees.35

All of the foregoing complicating features of the resource allocation
within and among FLOSS development projects are more or less interde-
pendent, and this list is not exhaustive. There is therefore a great deal of
challenging model-building work still to be done, and additional empiri-
cal research must be devoted to obtaining sensible parameterizations of
the simulation structure. But we maintain that this effort is worth under-

322 Jean-Michel Dalle and Paul A. David

taking because we are convinced that FLOSS research activity, be it in
computer science, economics, or other social sciences, is now proliferating
rapidly in empirical and theoretical directions, and some integrative tools
are needed to better assess the findings and their implications. Empirical
research of several kinds, about the nature of the involvement of devel-
opers in projects and their motivations, about the ecology of FLOSS
projects as typically observed in SourceForge-like environments, about the
commercial ecology and economy that now accompany all successful
FLOSS projects, should not only be confronted with the model and its find-
ings, but should also orient further modelling advances.

As it is essential for theorists to engage in a continuing dialog with
empirical researchers, agent-based simulation modeling would appear to
provide at least part of the necessary language for conducting such
exchanges. It is therefore to be hoped that by exploring this approach, it
will prove possible eventually to bring social science research on the free
and open source model of software development to bear in a reliably infor-
mative way upon issues of public and private policy for a sector of the
global economy that manifestly is rapidly growing in importance.

Notes

We gratefully acknowledge the informative comments and suggestions of Matthijs

den Besten, Rishab Ghosh, Karim R. Lakhani, and an anonymous reviewer on pre-

vious drafts of this paper, as well as Nicolas Carayol’s participation in our initial dis-

cussions of the modeling approach. Andrew Waterman contributed capable research

assistance on a number of critical points in the literature. According to the conclu-

sions suggested precisely in this chapter, we have found ourselves inclined to

provide an early release of our on-going project to open-source development:

however, certainly none of those who have helped can be held responsible for

defects that have remained, or for the views expressed here.

This research has drawn support from the Project on the Economic Organiza-

tion and Viability of Open Source Software, funded under National Science Foun-

dation Grant NSF IIS-0112962 to the Stanford Institute for Economic Policy

Research. See http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_

Announcmt.htm.

1. Although the focus of this paper is with the open source mode of production,

rather than with the terms on which the resulting software is licensed, the two

aspects are not unrelated in the organization of the class of large “community-

mode” projects that will be seen to be of particular interest here. Hence the term

“free/libre and open source software” is used in referring to both the projects and

their output. We follow the growing practice of using “libre” to emphasize that the

Allocation of Software Development Resources 323

intended meaning of “free” in “free software” relates to the “liberal” access condi-

tions, rather than its pecuniary costs.

2. See, among the salient early contributions to the “economics of open source

software,” Ghosh 1998a; Harhoff, Henkel and von Hippel 2000; Lakhani and von

Hippel 2003; Lerner and Tirole 2000; Weber 2000; Kogut and Metiu 2001.

3. In this particular vein, see for example Dalle and Jullien 2000, 2003; Bessen 2001;

Kuan 2001; Benkler 2002.

4. See for example David 1998a, 1998b, 2001b, and references to the history of

science literature supplied therein.

5. This point has not gone unrecognized by observers of the free and open software

movements. In “The Magic Cauldron,” Raymond (2001) explicitly notices the con-

nection between the information-sharing behavior of academic researchers and the

practices of participants in FLOSS projects. Further, Raymond’s (2001) illuminating

discussion of the norms and reward systems (which motivate and guide developers

selections of projects on which to work) quite clearly parallels the classic approach

of Robert K. Merton (1973) and his followers in the sociology of science. This is

underscored by Raymond’s (1999a) rejoinder to N. Berzoukov’s allegations on the

point. See also DiBona et al. 1999 for another early discussion; Kelty 2001 and David,

Arora, and Steinmueller 2001 expand the comparison with the norms and institu-

tions of open/academic science.

6. See Dasgupta and David 1994 and David 1998c, 2001b on the cognitive perfor-

mance of open science networks in comparison with that of proprietary research

organizations.

7. Therefore, it might well be said that in regard to the sociology and politics of the

open source software communities, “the medium is the message.”

8. See for example Raymond 2001; Stallman 1999a; and Dibona, Ockman, and

Stone 1999 and the statements of contributors collected therein.

9. Benkler 2002 has formulated this problem as one that appears in the organiza-

tional space between the hierarchically managed firm and the decentralized com-

petitive market, focuses attention primarily on the efficiency of software project

organizations, rather than considering the regime as a whole.

10. The term evidently derives from von Hippel’s (2001b, 2002) emphasis on the

respects in which open source software exemplifies the larger phenomenon of “user-

innovations.”

11. See the work of von Hippel (1998) on user innovation, and the view that the

use-utility of the software to FLOSS developers provided a powerful incentive for

their contributions to its production. Raymond (2001, 23–24) declares that “every

good work of software starts by scratching a developer’s personal itch” and refers to

324 Jean-Michel Dalle and Paul A. David

the well-known phrase about necessity being the mother of invention. But whether

the “developers’ itches” are caused only by the need for particular software, rather

than intrinsic interest in programming problems, or other aspects of the develop-

ment and debugging process, or the acquisition of particular skills, was left open by

Raymond. He contrasts Linux developers with commercial software developers

whose days are spent “grinding away for pay at programs they neither need nor love”

[emphasis added]. For further discussion, and survey evidence regarding motiva-

tions, see Lakhani and Wolf, chap. 1 and Ghosh, chap. 2, this volume.

12. It will be seen that the probabilistic allocational rules derive from a set of dis-

tinct community norms, and it will be quite straightforward within the structure of

the model to allow for heterogeneity in the responsiveness to peer influence in this

respect, by providing for interindividual differences in weighting within the rule-

set. This may be done either probabilistically, or by creating a variety of distinct

types of agents and specifying their relative frequencies in the population from

which contributions are drawn. For the purposes of the basic model presented here,

we have made a bold simplification by specifying that all potential contributors

respond uniformly to a common set of allocational rules.

13. See von Hippel 2001b and Franke and von Hippel 2002, on the development

of “user toolkits for innovation,” which are specific to a given production system

and product or service type, but within those constraints, enable producers to

transfer user need–related aspects of product or service design to the users

themselves.

14. Although Raymond is an astute participant-observer of these FLOSS communi-

ties, and his sociological generalizations have the virtue of inherent plausibility, it

should be noted that these propositions have yet to be validated by independent

empirical tests. See for example Hars and Ou 2002; Hertel, Niedner, and Herrmann

2003; Lakhani et al. 2003; and the systematic survey or interviews with representa-

tive samples of OS/FS community participants done by the FLOSS survey (Ghosh

et al. 2002) and its U.S. counterpart—“FLOSS-US”—at Stanford University.

15. Caution is needed when using the word “root” to designate the germinal

modules, because importing that term from the arboral metaphor may be confus-

ing for programmers: we are told by one informant that in “Unix-speak,” the system

administrator is called “root,” and the top of the file structure, likewise, is “root.”

Indeed, our hypothesized “dependency tree” might also be in some extent related

to the more familiar directory tree structure, but this correlation is likely to very

imperfect.

16. Note that here we neglect, for the moment, the possibility that bugs can become

more attractive “targets” because they’ve existed for long and have thus drawn the

attention of the community of developers, and also more specific peer assessments

of the “quality” of patches.

Allocation of Software Development Resources 325

17. We are fully aware of the limits of modeling exercises such as this one. Clearly,

it cannot not replicate the world, nor should it attempt to do so. Rather, it may

clarify and give insights about the phenomena under examination. Abstracting from

the complexity of the actual processes proceeds abductively—working back and

forth interactively between analytical deductions informed by empirical findings,

and empirical tests of theoretical propositions. Eliciting comments for participant

observations in FLOSS projects, especially empirical evidence and criticisms of par-

ticular abstractions embedded in the simulation structure, is therefore a vital part

of our procedure. It is both a means of improving the usefulness of the simulation

experiments performed with the model, and a means of enriching the body of sys-

tematic information about processes and structural features of FLOSS organization

that experts regard as being especially important. We have made several conscious

simplifications in the “reduced-form” formulation presented next, which we flag in

the notes, and comment upon in the conclusion. But we may also have unknow-

ingly suppressed or distorted other relevant features, and therefore strongly encour-

age comments on the specifications of the model.

18. And, in later elaborations of the basic model, launching an entirely different

project.

19. In the simplest formulations of the model, agents’ endowments are treated as

“fixed effects” and are obtained as random draws from a stationary distribution.

More complex schemes envisage endogenously determined and serially correlated

coding capacities, with allowance for experience-based learning effects at the agent

level.

20. We allow that there may be a small number of participants who are supported,

in some cases by commercial employers, to participate in open source projects on

a full-time basis: indeed, recent works (Hertel, Niedner, and Herrmann 2003;

Lakhani et al. 2003) have provided more detailed results in this respect, which will

clearly need to be addressed in later versions of the model.

21. We consider here more or less continuous “release policies”—that is, any

improvement in any given module is released as soon as it is contributed. No con-

tribution gets rejected, and accepted contributions are not piled up waiting for a

later release: this is indeed a strong assumption of this reduced-form model, as we

know from Linux and other projects that many pataches get rejected and that there

is always several pending patches. Furthermore, modules are released indepen-

dently—there is no coordination between the release of several modules, as it is

more or less the case when they are grouped into a distribution that gets released

regularly, at release dates decided by whomever is in charge of maintaining it. In

this first step of our modeling exercise, continuous release stands as an abstraction

of Raymond’s and others’ “release frequently” rule.

22. To simplify the allocation problem for the purposes of modeling, we consider

that a randomly drawn developer, with an associated endowment of effort, makes

326 Jean-Michel Dalle and Paul A. David

a commitment to work on a particular bug exclusively until that endowment is

exhausted.

23. This reward is of course actually conditioned by the fact that the project will

attract subsequent developers.

24. This parameter characterizes another aspect of “release policy” norms within

the community, as for the “release frequently” rule.

25. This expected cumulative reward function could also vary depending on the

quality of the code; that is, of its ability to attract early developers or late debug-

gers, or to grant more reward to all of them.

26. This formulation treats all bugs symmetrically, regardless of where they occur

in the code. This is so because the version number of a module that is close to the

root is counted the same way as the version of a module that is far from the root.

Yet bugs in low-level modules are likely to cause problems for users of many appli-

cations than is the case for high-level modules that are bug-ridden. This complica-

tion could readily be handled by reformulating the social utility measure.

27. In the future, we might be willing to implement a better differentiation between

functionality and reliability, with the idea also that users might typically value both

aspects differently from developers.

28. This is based upon a static ex post evaluation of the resulting tree form, and it

is evident that the results may be altered by considering the dynamics and apply-

ing social time discount rates to applications that become available for end users

only at considerably later dates. In other words, the social efficiency of the reward

structure that allocates developers’ efforts will depend upon the temporal distribu-

tion, as well as relative extent to which FLOSS-generated code meets the needs of

final users rather than the needs/goals of the agents who choose to work on these

projects.

29. This result holds for various other values of these parameters, although more

complete simulations are needed to assess the range of its validity. To exclude a

potential artifact, note that this result also holds if new nodes are created at the

same distance from the root as their parent node (instead of their parent node’s dis-

tance plus one).

30. This result holds for various other values of these parameters, although more

complete simulations are needed to fully assess the range of its validity.

31. The fact that these codevelopers are users essentially guarantees that they

provide solutions to existing and relevant problems: this effect is related to von

Hippel’s analysis of FLOSS as “user-innovation,” but also to another of Raymond’s

observations, according to which only contributions are useful in open source devel-

opment, as opposed to people showing up and proposing to “do something.” Fur-

thermore, this is close to the “given enough eyeballs, all bugs are shallow” rule, and

Allocation of Software Development Resources 327

from one of the key reasons why open source development (Linus’s Law) appears

to violate Brooks’s Law—although the citation we have put in front of this paper

tends to prove that Fred Brooks had the intuition that software productivity could

actually be improved if software was grown instead of built. Here, the “release early”

and “attract user-codevelopers” rules stand as necessary conditions for this property

to hold, because they make the set of existing problems explicit to all those who

might be able not only to encounter them, as users, but still more importantly to

solve them, as codevelopers, while be rewarded in doing so and increasing also the

author of the seminal contribution’s final reward.

32. What makes this an interesting strategic decision to model is the risk that while

working offline, so to speak, for an extended period, and not submitting increments

of code in more continuous flow, someone else might submit a discrete contribu-

tion that would have the same functional attributes, thereby preempting the invest-

ment’s chance of being accepted. The perceived hazard rates for “credit losses” of

that sort might be modeled as a rise as more developers gain familiarity with a given

module, or others technically related to it.

33. Such policies can be treated as applying uniformly across all the modules of a

project, or as defining a prespecified range of release intervals defined either in

temporal terms or in terms of incremental code.

34. Indeed, there may we some developers who would be quite insensible to those

motivations, even shun projects of that kind, believing that commercial software

vendors would cater to those needs, and that they would serve the needs of “minor-

ity” users. Survey information may be used to reach some inferences about the

distribution of such FLOSS community attitude regarding different categories of

software, which in turn could be introduced as a dimension of interproject

diversity.

35. The complex interplay of factors of learning and trust, and the ways that they

might shape path-dependent career trajectories of members of the FLOSS developer

communities, have been carefully discussed in recent work by Mateos-Garcia and

Steinmueller (2003).

328 Jean-Michel Dalle and Paul A. David

17 Shared Source: The Microsoft Perspective

Jason Matusow

Within the software industry, the debate continues about the roles of open
source, free, commercial, and noncommercial software. The reality is that
there are far more commonalities than differences. Where differences do
exist, though, it is helpful to examine their implications for businesses,
individuals, academic institutions, and government organizations.

The dialogue surrounding the different approaches to software develop-
ment and distribution covers a vast array of issues, including consumer
flexibility, cost versus value, economic opportunity, intellectual property
(IP) rights associated with software, industry standards, security, privacy,
business and licensing models, and more. These broad themes are woven
with source code as a common thread. On the surface, source code has
always been the exclusive domain of the programmer. But underlying the
engineering aspects of source code generation and modification are some
fundamental questions regarding the future of software innovation. There-
fore, the debate goes on.

The odd thing about source code is that many speak about it, but few
are able or willing to work with it. In 2002, with the goal of establishing
clarity and context, Microsoft undertook private research regarding source
code access for the software being used by businesses and governments.1

Conventional wisdom might have predicted that we would find corporate
IT professionals scouring source code in their daily work. Instead, we found
that approximately 95 percent of organizations do not look at the source
code of the operating systems serving as the core of their technology infra-
structure. In addition, we found that while approximately 5 percent do
look at the source code, less than 1 percent will modify it. As one looks at
increasingly smaller organizations, the practice of accessing and modify-
ing source code further drops.

The barrier to entry for understanding complex source code is signifi-
cant. Although there are millions of software developers in the world

today, they still represent a small fraction of the total population of those
using computers. Furthermore, there is an uneven distribution of devel-
opment skills among programmers, so the community looking at highly
complex code is smaller still. For most organizations, the cost and relative
benefit of employing highly skilled developers is prohibitive, especially
considering the abundance of quality packaged software.2

Even so, organizations stated that the opportunity to access operating
system source code is important to them.3 The majority of companies and
governments supported the option of seeing source code. Simply put,
transparency increases trust.

This suggests that to most people having the option of doing something
is of far greater importance than actually doing it. For example, look at the
idea behind government-mandated full disclosure of the financial infor-
mation of publicly traded companies. Even though these statements are
public, they are extremely complicated and require a thorough under-
standing of finance to truly gain insight into the health of a given firm.
The vast majority of private investors are dependent on a relatively small
community of professionals to interpret the numbers and provide guid-
ance. The option of viewing the numbers is broadly available, and trust is
therefore established through the availability of transparency. For most,
though, it is an option that will never be exercised.

Transfer the private investor scenario to the typical users of today’s oper-
ating systems and the situation looks much the same. Most organizations
or individuals have no intention of going under the hood of their operat-
ing system to tinker with source code.4 Organizations and average con-
sumers depend heavily on commercial vendors to provide the expected
levels of quality and support. This is where commercial software providers
deliver value in the products they build and sell.5

Over the past few years, I have been running the Microsoft Shared Source
Initiative. Through this initiative, we are making various types of Microsoft
source code available to customers, governments, partners, and competi-
tors worldwide. Some of our source code, such as that for Windows, permits
reference use only (meaning that no modifications can be made), while
our other programs, covering technologies such as Windows CE.NET,
allow for modifications and redistribution of that source code.6

Through my work on Shared Source, I have had countless conversa-
tions with individuals and organizations about the role of source code in
meeting their particular needs. Even though we have delivered source code
to more than a million engineers, it is a tiny percentage of the total devel-

330 Jason Matusow

oper population working with Microsoft technologies. Our practical expe-
rience on a global scale confirms the relationship between the operational
and peace-of-mind needs described earlier. Again, the factors of trans-
parency, choice, trust, and need all play a role in our approach to the
licensing of our source code.

Our approach to this issue is based on three simple ideas. First, our cus-
tomers want source access both for its technical benefits, and because trans-
parency increases trust. Second, there is no uniform way for Microsoft to
provide source access that covers all business and licensing needs across all
product offerings. Third, customers will be more successful with the source
code if solid tools and information are provided along with the technol-
ogy. Under these basic assumptions, Microsoft has been developing the
Shared Source approach. Shared Source is not open source; rather, it is the
means for a company that directly commercializes software to provide
source code access without weakening its competitive differentiators or
business model. Microsoft recognizes the benefits of the open source
model, yet also understands that it is not necessarily a model that will work
for everyone.

The goals of this chapter are twofold. First, to place the Shared Source
Initiative and commercial software into the broader context of the ongoing
source licensing debate. Second, to provide insight into how Microsoft has
approached the licensing of its core intellectual property assets.

A Natural Move to the Middle

In 2000 and 2001, there appeared to be clear delineation among those
involved in the source licensing debate. Microsoft was seen to be a polar-
izing factor as a continuum of positions was established, with the tradi-
tional intellectual property holders at one end and those opposed to
software as commercial property at the other. Individuals and organiza-
tions advocating open source software deliberately positioned themselves
as an alternative to Microsoft’s practices or as active opponents of
Microsoft. Now in 2004, as everyone deals with the aftershocks of the dot-
com era, a wave of practicality has washed over businesses and individu-
als alike.

Open source software (OSS) itself, as a classification of software, has
bifurcated into commercial and noncommercial segments. For many, the
most interesting OSS work going on today falls into the fully commercial
category, since significant dollars, resources, and technology are coming

Shared Source at Microsoft 331

from those seeking to use OSS as the basis for strategic business purposes
(see table 17.1).

Careful observation of the commercial software community shows a con-
solidation of source licensing practices by a majority of the most signifi-
cant players. In today’s marketplace, software development, licensing, and
business strategies fall under a blend of community and commercial
models. Few software companies are left that can properly call themselves
either purely OSS (in the sense of OSS as a community-driven, not-for-
profit exercise) or purely commercial.

For the sake of this discussion, let’s draw a line of distinction between
noncommercial and commercial software. The merits of both may be
observed in the software ecosystem that has developed over the past 30
years, as discussed later in this chapter.

Noncommercial software may be roughly grouped into three categories:

� Research: Government and academic researchers who produce technolo-
gies designed to move the general state of the art forward.
� Teaching and learning: Professors, students, and self-educators who work
with, and learn from, software that is available free of charge and have no
intention of commercializing the software generated in the learning
process.
� Community development and problem solving: Hobbyists and professional
developers who produce software with no intention of commercialization;
this software may be meant to replace existing commercial options or to
solve problems vendors have not addressed.

Commercial software may be roughly grouped into two categories:

� Direct commercialization: Those who use the product of community
and/or corporate development as a mechanism for generating a direct
revenue stream.
� Indirect commercialization: Those who use the product of community
and/or corporate development to facilitate the success of another product
or service for the generation of revenue.

It is worth noting here that the concepts of noncommercial and
commercial software have nothing to do with the availability of source
code. If a long-standing commercial software vendor provides source code
of a given product, this does not change the fact that the software is
commercial in nature. At the same time, if a piece of software is produced
and maintained as communal, noncommercial software, there is no reason
a commercial entity may not make use of it without altering its standing
as noncommercial software.

332 Jason Matusow

Shared Source at Microsoft 333

Table 17.1
Software development strategies

Direct Community Red Hat Inc.’s distribution of Linux is

commercialization development a combination of community-built

software through the Free and Open

Source models and corporate-funded

professional development contri-

butions. The pricing of its Premium

Editions, its certification practices for

hardware and applications, and its

support policies are all mechanisms to

directly commercialize the operating

system.

Apple Computer Inc. has combined

community software with commercial

software to create the OS X operating

system. The company is directly com-

mercializing the software while utilizing

community-developed code.

Corporate Microsoft has built the Windows product

development using corporate development resources.

The product is directly commercialized

through the licensing of the binary

version of the product. The source code

is now available to a limited community

through the Shared Source Initiative.

CollabNet Inc. has built a proprietary

tool that is directly commercialized

through the licensing of the binary

version of the product and through

associated services. The product facili-

tates the use of the OSS development

model, which could be used to create

noncommercial software.

Indirect Community IBM Corp. has heavily participated in the

commercialization development community-based development of the

Apache Web server. While IBM is not

directly commercializing the Apache

server, it is driving the return on invest-

ment revenue stream through the sale of

the WebSphere product. RealNetworks

Inc. released significant

334 Jason Matusow

Table 17.1
(continued)

segments of its Helix product source

code, which was originally commerci-

ally developed. The goal of community

development around the Helix product

set is to generate a larger market for

other revenue-generating products.

Corporate Adobe Systems Inc.’s Acrobat Reader is

development a product of corporate development and

of closely held intellectual property.

Reader is downloadable at no cost to

drive the sale of the full Acrobat product.

(Adobe Systems Inc. does provide the file

format specification for .pdf files, but

they are not releasing the source code to

their implementation. More information

may be found at http://www.adobe.com.)

Driver development kits (DDKs) and

software development kits (SDKs) are

provided by all commercial operating

system vendors (examples include

Novell Inc.’s NDK and Microsoft’s

DDK). These developer tools often

contain sample source code that can be

modified and redistributed, yet the kits

themselves are provided at no cost to

developers. There is no direct commercial

value to the DDKs or SDKs themselves;

rather, they create opportunity for others

to build software and hardware for that

platform.

Table 17.1 maps the commercial categories listed previously to examples
from the software industry. Many of the companies in the table closely
associate themselves with the OSS movement, yet they are clearly com-
mercial enterprises. Some of those listed have no direct affiliation with the
concepts of OSS, yet their behavior can be instructive, specifically, their
approach to the distribution of software.

A common misperception about software developed under the open
source model is that a random group of distributed developers is creating
the software being adopted by businesses. Although this is true for some
smaller projects, the reality is that professional corporate teams or highly
structured not-for-profit organizations are driving the production, testing,
distribution, and support of the majority of the key OSS technologies. The
concepts behind source code access are not the determining factors as to
whether the software is commercial. Source code access plays a role in both
commercial and noncommercial environments.

Source code access issues unquestionably affect the future of innovation
in the industry. The move to the middle outlined earlier is a result of the
influence of these issues on the industry to date.

The Software Ecosystem

At the core of software evolution is the interaction among government,
academic, and private research. These relationships represent an inte-
grated, natural ecosystem. Though these organisms exist independently
and conduct independent “development,” there are clear areas of interde-
pendency that yield dramatically greater results for the whole.

This ecosystem has been at the heart of the ongoing cycle of sustained
innovation that has made information technology one of the most
dynamic industries in the economy.7 The blending of differing develop-
ment, licensing, and business models has been the central factor for
success.

Governments and universities undertake basic research and share this
knowledge with the public.8 In turn, companies in the private sector use
some of these technologies in combination with their even greater ongoing
investment in research and development9 to create commercial products,
while also contributing to the work of common standards bodies. Their
success leads to greater employment and tax revenues, as well as additional
funding for academic research projects.10

The concepts associated with the software ecosystem are not unique to
discussions of source code access. Take aviation, for example. Although the

Shared Source at Microsoft 335

vast majority of us have little everyday use for an F-15 Eagle jet fighter,
government and academic research and development behind the fighter
for everything from metallurgy to heads-up displays have benefited the
production and operation of commercial airplanes.

For a more IT-centric example, consider TCP/IP. Born as a government
research project, it matured in academia under the OSS development
model and evolved into an open industry standard. After that, it was
further refined and brought into the computing mainstream via propri-
etary implementations by commercial software companies such as Novell,
Apple, IBM, and Microsoft.

Microsoft’s Windows operating system, on the other hand, was devel-
oped privately and for profit. But the product includes many components
born of government and academically funded work and contains im-
plementations of dozens of open industry standards. Furthermore, the
publication of thousands of application programming interfaces created
business opportunities for tens of thousands of software businesses and
has resulted in innumerable custom applications that address individual
needs.

So where will this line of reasoning take us? If the past is any indication,
the future of software will not be the result of the dominance of a single
development, licensing, or business model. Future innovation will not
come solely from government, private industry, or a loose coalition of indi-
viduals acting in the best interests of society at large. The continued health
of the cycle of sustained innovation—the fruits of which we have enjoyed
for three decades—will depend entirely on the continued melding of
approaches and technologies. In the end, the consumers of software, both
custom and packaged, will be the beneficiaries, particularly as natural
market forces continue to shape the actions and results of corporations and
individuals alike.

Striking a Balance

Given the ongoing move to the middle of software vendors and the effects
of the software ecosystem, the question for Microsoft has been how to find
the proper balance between greater transparency, sustainable business, and
innovation investment.

OSS is clearly having an effect on how software companies think about
and treat their intellectual property assets.11 The sharing of source code,
while beneficial in many ways, also presents challenges to the accepted
concepts of the commercialization of software and competitive differenti-

336 Jason Matusow

ation. The modus operandi for most software companies has been to
closely protect IP assets in software products to maintain uniqueness and
competitiveness in the market. Trade secret law, which covers many aspects
of software that are obscured by the compilation process, has played a
pivotal role in the IP protection strategy of most commercial software
companies. Historically, this protection has been maintained through
either binary-only distribution or source code distribution under nondis-
closure agreements. Yet OSS and other source-sharing models are moving
organizations to seek a balance between IP protection (particularly with
respect to protection of trade secrets) and customer/partner benefit.

Arguably, intellectual property rights have become more important as
the desirability and functionality of transparency increases. The creative
use and combination of all four forms of IP protection are paving the way
for further source code sharing by allowing companies to selectively ratchet
back trade secret protection.12

This is not to say that it always makes sense for companies to provide
the source code to their software products, thereby limiting or destroying
their trade secrets. Commercial software companies balance perceived cus-
tomer needs and desires with a host of other business concerns. For
instance, many investors demand that companies protect their assets
through all means possible so as to protect the future returns on invest-
ment and ensure a healthy revenue stream. Anyone who has ever gone
through the process of attempting to raise capital for a software business
can attest to this. In some situations, it may be that trade secrets in a soft-
ware product are essential to preserving the market advantage of that
product. Accordingly, a company would be unwilling to make the source
code to that product available.

Most successful software businesses reinvest material amounts of their
gross incomes into research and development. Microsoft is now investing
approximately $5 billion annually, or approximately 15 percent of gross
revenues, in our future.13 So where does this leave us? How do you balance
the obvious benefits of source code transparency and flexibility for devel-
opers against the software business reality of protection of assets and the
need for healthy sources of revenue?

Each software company must decide for itself which path to take. For
Microsoft, it was clear that customers, partners, and governments
were eager for us to move toward transparency and flexibility. At the
same time, we had to take that step with an eye to the other side of
the equation as well. Through this process, we created the Shared Source
Initiative.

Shared Source at Microsoft 337

The Shared Source Initiative

Microsoft is sharing source code with customers, partners, and govern-
ments globally. We have released source programs delivering well over 100
million lines of source code. The Shared Source Initiative evolved as we
sought to both address customer and partner requests to have greater access
to source code and look carefully at the benefits and potential pitfalls of
the OSS and Free Software approaches. We then selectively applied lessons
learned from those approaches and our existing business model to better
meet customers’ needs.

Shared Source is a framework, not a license.14 Any commercial software
company needs to analyze the interplay among the elements of develop-
ment models, licensing, and business models to establish a successful strat-
egy whereby source code may be shared or opened in a way that benefits
customers without jeopardizing the company’s ability to remain in busi-
ness. Microsoft’s licensing approach ranges from reference-only grants
(where licensees may review Microsoft source code for the purposes of ref-
erence and debugging, but are not granted modification or redistribution
rights) to broad grants that allow licensees to review, modify, redistribute,
and sell works with no royalties paid to Microsoft.

There are now hundreds of thousands of developers with Microsoft
source code. We have taken what is arguably the most commercially valu-
able intellectual property in the software industry and made it available to
thousands of organizations in more than 60 countries.15 Shared Source pro-
grams now deliver source code for Windows, Windows CE.NET, Visual
Studio.NET, C#/CLI, ASP.NET, and Passport technologies. Over time, we
will continue to evaluate source code as a feature of our products and also
how our customers and partners may best use the source code.

One of the most common misperceptions of the Shared Source model is
that it is limited to “look but don’t touch” and a single license. In fact,
Shared Source covers four key concepts:

� Support existing customers: Provide source access for existing customers to
facilitate product support, deployments, security testing, and custom appli-
cation development.
� Generate new development: Provide instructional source code through samples
and core components for the facilitation of new development projects.
� Augment teaching and research: Provide source code and documentation
for use in classrooms and textbook publishing and as a basis for advanced
research.

338 Jason Matusow

� Promote partner opportunity: Provide licensing structure and source
code to encourage mutually advantageous new business opportunities for
partners.

At the time of the writing of this chapter, seven Microsoft product groups
are providing source code with some ability to create derivative works of
the source code.16 Three of the groups are placing source code in the com-
munity’s hands with rights to create derivative works and distribute them
commercially, meaning that a programmer can get the code, modify it, and
redistribute it under a traditional commercial binary license for profit—
never paying Microsoft a dime. All the current source code programs from
Microsoft are provided at no cost.17

Building a Shared Source Program

Microsoft has applied significant resources to establish the various
Shared Source programs. Every source release depends on a series of
decisions made to deliver the proper balance between customer and
business benefits. We have also invested in engineering resources to deliver
augmented tools and documentation that increase the value of source code
access.

Table 17.2 provides a small sample of the questions and process
Microsoft works through when establishing a source release. This is by no
means a complete analysis tool, but rather a sample of the decision-making
process for a commercial software provider considering a source-sharing
program.

A well-designed source release should accomplish a few key goals:

� Provide educational insight into the product or project being shared.
Value is derived for many simply through availability and analysis rather
than modification of source code.
� Deliver related tools, documentation, and support to increase the value
to the individual working with the source code, particularly in programs
with derivative rights associated with them.
� Establish clear feedback mechanisms to facilitate the improvement of the
code base.
� Identify the community that most benefits from access to the source
code.
� Define a set of rights that protects the creator of the source code and
those working with the source code.

Shared Source at Microsoft 339

340 Jason Matusow

Table 17.2
Shared source consideration

Questions Considerations

Determining What community are Not all source releases have to be

objectives you planning to serve global and available to the general

with this source code? public. Working with gated

communities, large customers, key

partners, or particular government

agencies might be more appropriate

for some situations.

What is the benefit of Source code does not address all IT

this source code to concerns. Understanding how the

these organizations source will be beneficial is a critical

and individuals? factor in determining granted rights

and delivery mechanisms.

How many people Broad-reach programs may have

will have the source significant resource requirements for

code and how will source delivery and/or community

you interact with participation. This goes beyond

them? logistical concerns such as download

capacity. The amount of engineering

participation, feedback processing, and

continued investment, among other

elements, must be considered.

What geographies Aside from the more obvious concerns

will be eligible for about the localization of

source access? documentation, there are significant

legal differences to be considered from

country to country. The treatment of

IP issues varies greatly and you should

seek legal counsel on this issue. (This

concern is universal for any source

model—OSS, Shared Source, or

otherwise. For example, many of the

most popular OSS licenses are based

on assumptions of the U.S. copyright

system. Because code is used globally,

the legal standards applied to licenses

vary greatly.)

Shared Source at Microsoft 341

Table 17.2
(continued)

Questions Considerations

Source What source are you Just as the community you plan to

management planning to share? share source code with is not

necessarily 100 percent of the

population, the source code you share

does not have to represent 100

percent of a product. Certain

components of a product are

extremely valuable, are licensed to

you by a third party under terms that

prohibit disclosure of source code, or

are subject to government export

restrictions.

Do you have rights to Commercial software often contains

share the targeted components that originated elsewhere

source base? and are being reused or licensed

within a larger product. The greater

the number of copyright holders there

are for a given piece of software, the

greater the complexity involved in

source-sharing of commercial

products.

Have you cleaned the Within source code, developers place

code for public comments to provide insight into

consumption and their thought processes. There can be

thought about the significant value in augmenting

quality of comments? comments within particularly

complex code segments.

Unfortunately, there is often colorful

language in source code, and public

consumption should be taken into

account.

Do you have a source Most successful software engineering

management strategy projects have mature source

in place for bug fixes management processes in place. If you

and future releases are taking a previously nonshared

related to the public code base and moving it out to a

source program? broader set of developers, you need to

establish a process for delivering

342 Jason Matusow

Table 17.2
(continued)

Questions Considerations

ongoing inhouse engineering work to

the community that now has the

source code.

How will you handle Along the same lines as new inhouse

incoming suggestions code delivery, you need to establish a

or code fixes? process for receiving suggestions, bug

fixes, and new features from the

community that has access to the

code. You might also want to consider

the legal ramifications and risks

associated with incorporating

incoming suggestions or code fixes

into your code base.

Licensing What rights do you Although the input of attorneys is

plan to give for important in establishing licensing

viewing, debugging, rights for source code, the far more

modifying, and important voice is that of your

distributing? customers and partners. The driving

factor must be how they will benefit

most from the source code. Fiduciary

responsibility to investors regarding

the protection of IP is critical as well,

but that thinking should be applied

secondarily. A successful source license

program establishes a balance between

these factors to the benefit of all

involved.

If you grant derivative Microsoft has opted to implement two

rights, can the types of derivative work license

redistribution be approaches to differentiate business

commercial? goals within our source licensing

programs. The commercialization of

derivative works is a key focal point

for commercial software vendors

releasing source code.

Shared Source at Microsoft 343

Table 17.2
(continued)

Questions Considerations

Fulfillment What is the delivery There is a wide range of source

mechanism for the delivery options. The OSS community

source code? Will it has a number of sites such as VA

simply be a package Software Corp.’s SourceForge for the

of source code or will delivery of source code and the

there be added value management of projects. You may

through a delivery choose to host your own

tool? environment, as Microsoft has done

with its GotDotNet WorkSpaces

project. Microsoft also built a secure

Web infrastructure for the delivery of

Windows source code: MSDN Code

Center Premium. Other groups within

Microsoft have opted for simple Web

downloads of source files, leaving the

choice of toolset and engineering

environment up to the individual

developer. Determining the size of the

community to be involved and the

amount of source code included in

the release is an important factor in

choosing a delivery mechanism.

How will you engage Although a community of developers

the community of may spontaneously form around a

individuals and given source base, successful programs

organizations who will likely include involvement from

have the source code? the engineers who built the code.

Furthermore, strong project

management helps keep community

involvement productive.

Have you produced The creation of good software

additional support documentation has proven to be one

documentation for of the most expensive and difficult

the source base? problems in the industry. The more

information provided to developers

working with a given source base, the

better. Although this is not

mandatory, it will certainly improve

the quality of the source-sharing

program as a whole.

Lessons Learned and a Look Ahead

The most fundamental lesson we have learned through the Shared Source
process is that source code is a product feature. For many, it is a feature
that will never be used, but an option that is good to have. Our customers
and partners who have source code, and who are actively using it, tell us
that it is invaluable to the way they use our products. Yet this number
represents a minute fraction of the total number of individuals and
organizations using our products.

Microsoft’s Shared Source Initiative is only two years old, but we have
been providing source code to academic institutions and OEMs for more
than 12 years. Before 2001, our source sharing reached a limited audience
and was less formal than it is today. We have been listening to our cus-
tomers and are learning from OSS—that is the blend to which we aspire
with this initiative. In many ways, Shared Source is still in its version 1.0
phase. The success of the programs to date has shown us the importance
of expanding this initiative into other code bases.

Licensing of source code will continue to be a hot button for the indus-
try for the foreseeable future. There are some basic questions about the
role of IP in future innovation. At the heart of Shared Source is a belief
that intellectual property, and the protection of that property, is behind
the fundamental success of an ongoing cycle of sustained innovation. The
dissemination of source code is exceedingly beneficial, but not to the
exclusion of a successful software industry. Nor is it the panacea for all
information technology concerns; multiple models will continue to
coexist. It is one part of a much larger puzzle, and I for one am glad to be
sitting at the table working on a few small pieces.

Notes

1. This private research involved more than 1,100 individuals in five countries rep-

resenting business decision makers, IT professionals, and developers. The study was

completed in April 2003.

2. This premise is based on an extremely simplified view of Ronald Coase’s con-

cept of transaction costs and how they influence organizational behavior. Coase was

awarded the Nobel Prize in Economic Sciences in 1991 for his work regard-

ing the significance of transaction costs and property rights for the institutional

structure and functioning of the economy (http://coase.org, accessed May 20,

2003).

344 Jason Matusow

3. The same research in note 1 revealed that approximately 60 percent of respon-

dents felt that having the option to view source code was critical to running soft-

ware in a business setting.

4. This is equally true for Windows, Linux, Mac OS, Netware, OS/400, and other

major commercial operating systems. The smallest of these represents millions of

lines of source code (an operating system is more than just a kernel), and as they

mature, complexity increases rather than decreases.

5. Clearly, the capability of community support cannot be underestimated. For

years, there have been newsgroups and mailing lists where the community has pro-

vided support for commercial, open, free, and shareware software. When organiza-

tions are dealing with their mission-critical systems, however, they primarily seek

professional support with service-level agreements to mitigate risk.

6. As of May 2003, Microsoft has programs in place for Windows, Windows CE.NET,

Visual Studio.NET, C#/CLI, ASP.NET, and Passport. Under the Windows programs,

only academic researchers are given rights to modify the source code. For all other

source programs, modification and redistribution rights are granted. Please see

http://www.microsoft.com/sharedsource/ for further details.

7. In the latter half of the 1990s alone, information-related industries, representing

8.3 percent of the U.S. economy, fueled approximately 30 percent of overall eco-

nomic growth and at least half the acceleration in productivity rates (U.S. Depart-

ment of Commerce, U.S. Government Working Group on Electronic Commerce,

“Leadership for the New Millennium: Delivering on Digital Progress and Prosper-

ity,” Jan. 16, 2001).

8. In fact, U.S. federal agencies are required by law to encourage certain grant recip-

ients and public contractors to patent the results of government-sponsored research,

and universities are active in asserting research-related intellectual property rights.

Since at least 1980, the U.S. government has pursued a vigorous policy of transfer-

ring the results of federally funded technology research to industry to promote inno-

vation and commercialization. See the Bayh-Dole Act of 1980, the Stevenson-Wydler

Technology Innovation Act of 1980, the Federal Technology Transfer Act of 1986,

Executive Order 12591 of 1987, the National Technology Transfer and Advancement

Act of 1995, and the Technology Transfer Commercialization Act of 2000.

9. From 1969 through 1994, U.S. high-tech R&D investment was $77.6 billion from

the government and $262 billion from private industry (the National Science Foun-

dation’s Industrial Research and Development Information System (IRIS); accessed

Oct. 11, 2002, at http://www.nsf.gov/sbe/srs/iris/start.htm.)

10. A good example of this is Google, Inc. Google was federally funded as one of

15 Stanford University Digital Libraries Initiative Phase 1 Projects. In 1996, the tech-

nology was disclosed to Stanford’s Office of Technology Licensing (OTL). In 1998,

Shared Source at Microsoft 345

the OTL gave permission to Sergey Brin and Larry Page to establish a commercial

entity based on the technology. Today, Google, Inc. is a successful firm generating

revenue for both the company and Stanford University.

11. Within the source licensing industry debate, there are some who argue about

the use of the term intellectual property. The use of it here covers the holistic concept

of copyright, patent, trade secret, and trademark.

12. Recent cases involving both SuSE Linux and Red Hat have highlighted the

importance of trademark in the open source business model.

13. It is not uncommon for software firms to reinvest between 15 and 30 percent

of gross revenues in R&D.

14. http://www.opensource.org, visited Sept 8, 2004. There are 54 licenses that the

Open Source Initiative has stated meet its criteria for being an “open source” license.

As commercialization of OSS continues to expand, and as commercial software com-

panies continue to push the limits of source sharing, there is likely to be a contin-

ued proliferation of source licenses as each organization and individual determines

what terms it is most comfortable with for the distribution of its IP.

15. At this time, there is no comparable sharing of source code for flagship prod-

ucts in the software industry. Although many vendors provide top customers with

sources upon request, few have put broad-reach programs in place. It is likely that

this status will change over time as the positive effects of OSS, Shared Source, and

other source delivery programs continue to be recognized.

16. The Windows Academic Shared Source and OEM licenses allow researchers to

create temporary modifications of the Windows source code for research and testing

purposes. All other constituency groups with Windows source access (enterprise cus-

tomers, system integrators, and government agencies) have reference-only rights—

meaning that they may view and debug, but may not create derivative works of the

source code.

17. Due to the delay between writing and publishing of this document, specific

details of the programs have been left out. If you would like further information

on source availability from Microsoft, please visit http://www.microsoft.com/

sharedsource/.

346 Jason Matusow

V Law, Community, and Society

18 Open Code and Open Societies

Lawrence Lessig

It has been more than a decade since the wall fell; more than a decade
since the closed society was declared dead; more than a decade since the
ideals of the open society were said to have prevailed; more than a decade
since the struggle between open and closed was all but at an end.

We stand here in an odd relationship to those who saw that closed
society pass. For we celebrate its passing, while a more pervasive closed
culture grows up around us. We are confident in our victory, and yet our
victory is being undone. If there was an open society, if we have known
it, then that open society is dying. In the most significant sense that idea
could embrace, it is passing away.

In the United States, we believe we understand the passing of the closed
society. We believe we understand its source—that society collapsed
because it was weak; it was weak because its economy was dead; its
economy was dead because it had no free market, no strong system of pro-
perty, no support for the exchange and freedom that a property based free
market might produce.

We believe we understand property equals progress; and more property
equals more progress; and more perfectly protected property equals more
perfectly protected progress.

Now in this view, we are not terribly naive. Property historically has been
a key to progress; it has been an important check on arbitrary state power;
it has been a balance to concentrations of power that otherwise pervert.
Property is no doubt central and important to a free society and free
culture. And so to question property, to question my countrymen, is not
to doubt its importance.

It is instead to put its importance in context. To let us see something
about what the progress that property produces depend upon. To let us
understand the mix of resources that produce progress. And to force us to
account for that mix.

Now I know you are beginning to wonder: what exactly does this have
to do with open source, or free software? How does this topic contribute
to the discussion of this book?

But I confess to no such mistakes. I insist that we begin here, because it
is extremely important to place the issues of open source, and free soft-
ware, in their full context. It is important, in other words, to understand
their significance—for their significance is much more than most allow.

Most think about these issues of free software, or open source software,
as if they were simply questions about the efficiency of coding. Most think
about them as if the only issue that this code might raise is whether it is
faster, or more robust, or more reliable than closed code. Most think that
this is simply a question of efficiency.

Most think this, and most are wrong. The issues of open source or free
software are not simply the issues of efficiency. If that were all this issue
was about, there would be little reason for anyone to pay any more atten-
tion to this subject than to the question of whether an upgrade to Office
really is faster than the version it replaced.

I think the issues of open source and free software are fundamental in a
free society. I think they are at the core of what we mean by an open
society. But to see their relation to this core, we must see the context.

Pierre de Fermat was a lawyer, and an amateur mathematician. He pub-
lished one paper in his life—an anonymous article written as an appendix
to a colleague’s book. But while he published little, he thought lots about
the open questions of mathematics of his time. And in 1630, in the margin
of his father’s copy of Diophantus’s Arithmetica, he scribbled next to an
obscure theorem (namely, Xn + Yn = Zn has no non-zero integer

solutions for N > 2) “I have discovered a truly remarkable proof which
this margin is too small to contain.”

It’s not clear that Fermat had a proof at all. Indeed, in all his mathe-
matical papers, there was but one formal proof. But whether a genius math-
ematician or not, Fermat was clearly a genius self-promoter, for it is this
puzzle that has made Fermat famous. For close to 400 hundred years, the
very best mathematicians in the world have tried to pen the proof that
Fermat forgot.

In the early 1990s, after puzzling on and off about the problem since he
was a child, Andrew Wiles believed that he had solved Fermat’s last
theorem. He published his results—on the Internet, as well as other
places—but very soon afterwards, a glitch was discovered. The proof was
flawed. So he withdrew his claim to have solved Fermat’s theorem.

350 Lawrence Lessig

But he could not withdraw the proof. It was out there, in the ether of
an Internet, and could not be erased. It was in the hands of many people,
some of whom continued to work on the proof, even though flawed. And
after extensive and engaged exchange on the net, the glitch was undone.
The problem in Wiles’s proof was fixed. Fermat’s last theorem was solved.

Where was Wiles’s flawed proof before it was solved?
Probably no reader of this chapter is homeless; we all have a place where

we sleep that is not the street. That place may be a house; it may be an
apartment; it may be a dorm; it may be with friends. But that place, and
the stuff in it, is probably property—the property of someone, giving that
someone the right to exclude.

But what about the road leading up to that place? What about the
highway leading to that road? To whom does that belong? Who has the
right to exclude others from the roads? Or from the sidewalks? Or from
the parks? Whose property is the sidewalks or the parks?

There is a concept called copyright. It is a species of something called intel-
lectual property. This term, intellectual property, is a recent creation. Before
the late nineteenth century in America, the concept did not exist. Before
then, copyright was a kind of monopoly. It was a state-granted right to
control how someone used a particular form of text. But by the late nine-
teenth century, so familiar was this monopoly that it was common, and
unremarkable, to call it property.

In the Anglo-American tradition, the origin of this concept of copyright
was contested. At its birth, there were those who said that an author’s copy-
right was his property. His right, perpetually, to control the duplication
and use of what he had produced. And there were others who were wildly
opposed to such an idea—who believed any control the author had was
simply the bad consequences of a state-imposed monopoly.

But in the classic style of the English, and in the early style of the Amer-
icans, a compromise was chosen. A copyright was a monopoly granted to
an author for a limited time, after which, the copyrighted material fell into
the public domain. As the American Supreme Court Justice Joseph Story
put it, copyright on this conception “is beneficial . . . to authors and inven-
tors, . . . [and beneficial] to the public, as it will promote the progress of
science and the useful arts, and admit the people at large, after a short
interval, to the full possession and enjoyment of all writings and inven-
tions without restraint” (emphasis added).

It is hard to imagine how significant the early decision was to make
copyright a limited right in England. The House of Lords finally decided
that copyright was limited by the Statute of Anne in the 1770s. Until that

Open Code and Open Societies 351

time, publishers claimed a perpetual copyright. But when the right passed
to the public, an extraordinary amount of work fell into the public domain.
The works of Shakespeare, for example, for the first time were free of the
control of monopolistic publishers.

So, where is a copyright-protected work once it falls out of copyright pro-
tection? What is the place where it sits? What exactly is a copy of Romeo
and Juliet after the copyright passes?

Andrew Wiles’s flawed proof; the streets, or sidewalks, or parks; Romeo and
Juliet after the copyright passes: all of these things exist in a place modern
political culture has forgotten. All of these things exist in the commons—
in a public domain, from which anyone can draw. Anyone can draw from
the commons—and here is the crucial idea—without the permission of
anyone else. These resources exist in a place where anyone in society is
free to draw upon them, where anyone can take and use without the per-
mission of anyone else.

Now of course, strictly speaking, stuff in the commons is not necessar-
ily free. The streets can be closed; or you might be required to get a permit
to hold a protest before city hall. The parks might ban people in the
evening. Public beaches get full.

But the critical feature of a resource in the commons is not that the
resource is free, as Richard Stallman describes it, in the sense of free beer.
There may well be restrictions on access to a resource in the commons. But
whatever restrictions there are, these restrictions are, as we lawyers say,
content-neutral. A park might be closed in the evening, but it is not
closed to liberals and open to conservatives. The restrictions that are
imposed on a resource in the commons are restrictions that are neutral
and general.

Thus, the first idea to see is how important the commons is—not against
property, but with property. How important the commons is to the
production and creation of other property. How important it is to the
flourishing of other property. The point in emphasizing the importance
of a commons is not to deny the significance of property. It is instead to
show how property depends upon a rich commons. How creativity
depends upon a rich commons. How one feeds on the other. The issue
is therefore never whether property or a commons, but how the two
might mix.

We need the streets to move goods to market: the streets, a commons;
goods, private property. We need a marketplace within which to sell our
goods: a market place, a commons; goods, private property.

352 Lawrence Lessig

Now among commons, among public domains, we might distinguish
two categories. We might think about the public domain of real things,
and the public domain of intellectual things. The public domain, for
example, of streets and parks, and the public domain of ideas, or created
works. These commons serve similar functions, but they are importantly
different. They are different because while the use of a real thing—like a
park, or a road—consumes a park or a road, the use of an idea restricts
nothing. If I sing a song that you have written, then you still have as much
of the song as you had before. My using your song does not diminish your
possession of it.

The realm of ideas, then, in the words of economists, is not rivalrous in
the way that the realm of real things is. This difference is crucial in the
digital age. But it is a point that has been understood since the beginning
of my country. America’s greatest philosopher of freedom, Thomas Jeffer-
son, understood it. And the following is perhaps the most powerful passage
from his writing that in my view defines the dilemma of our age:

If nature has made any one thing less susceptible than all others of exclusive prop-

erty, it is the action of the thinking power called an idea, which an individual may

exclusively possess as long as he keeps it to himself; but the moment it is divulged,

it forces itself into the possession of everyone, and the receiver cannot dispossess

himself of it. Its peculiar character, too, is that no one possesses the less, because

every other possess the whole of it. He who receives an idea from me, receives

instruction himself without lessening mine; as he who lites his taper at mine,

receives light without darkening me. That ideas should freely spread from one to

another over the globe, for the moral and mutual instruction of man, and improve-

ment of his condition, seems to have been peculiarly and benevolently designed by

nature, when she made them, like fire, expansible over all space, without lessening

their density at any point, and like the air in which we breathe, move, and have

our physical being, incapable of confinement, or exclusive appropriation. Inven-

tions then cannot, in nature, be a subject of property. (Letter form Thomas Jeffer-

son to Isaac McPherson [13 August 1813] in The Writings of Thomas Jefferson, vol. 6,

Andrew A. Lipscomb and Albert Ellery Bergh, eds., 1903, 330, 333–334.)

Notice the crucial steps in Jefferson’s story: “Its peculiar character . . . is
that no one possess the less because every other possess the whole. . . . He
who receives an idea from me receives instruction himself without lessen-
ing mine; as he who lites his taper at mine receives light without darken-
ing me.”

Ideas function differently. Their nature, in Jefferson’s words, is different.
It is in their nature to be inexhaustible; uncontrollable; necessarily free.
Nature has made it so; and we can enjoy, as we enjoy the beauty of sunset,
this extraordinary value that nature has given us.

Open Code and Open Societies 353

Jefferson was brilliant; but arguably Jefferson was wrong. He identified
a crucial fact about ideas and things intellectual; he defended the world
that ideal created; he promoted it—the ideal of the Enlightenment. But he
was wrong to believe that Nature would protect it. He was wrong to believe
that Nature would conspire always to keep ideas free. He was wrong to
believe that he knew enough about what Nature could do to understand
what Nature would always defend.

For the critical fact about the world we know—cyberspace—is that cyber-
space changes Jefferson’s Nature. What Jefferson thought couldn’t be cap-
tured, can in cyberspace be captured. What Jefferson thought could not in
nature be controlled, can in cyberspace be controlled. What Jefferson
thought essentially and perpetually free is free only if we choose to leave
it open; free only if we code the space to keep it free; free only if we make
it so. What Jefferson thought Nature guaranteed, turns out to be a good
idea that we must defend.

How is this control made possible? When cyberspace was born, a gaggle
of well-paid Chicken Littles raced about the legislatures of major world
democracies and said copyright would be killed by cyberspace; intellectual
property was dead in cyberspace, and, they squawked, Congress must do
something in response. Chicken Littles—people convinced the sky was
falling, well-paid Chicken Littles—paid by Hollywood.

At the same time these Chicken Littles were racing about Congresses and
Parliaments, they were also racing about the West Coast in America,
signing up coders—software and hardware producers—to help them build
something called trusted systems to better protect their content. Trusted
systems—code meant to counter a feature of the then-dominant code of
cyberspace, that content could be copied for free and perfectly; that it
could distributed for free and without limit; that content might for once
be outside of the control of Hollywood.

These features of the original Net Hollywood considered to be bugs. And
so they scampered about trying to find coders who could build a system
that would make content safe on the Net—which means to make it safe
to distribute without losing control.

These Chicken Littles then were smart—they turned to code from both
coasts in America. From the East Coast, they got good East Coast code—laws
that radically increased the protection content received; from the West
Coast, they got great West Coast code—software and hardware that would
make it possible to encrypt and protect content. And these two projects
find their ultimate genius in a statute passed by Congress in 1998—the
Digital Millennium Copyright Act, with its anticircumvention provision.

354 Lawrence Lessig

I’ve made something of a career telling the world that code is law.
That rules built into software and hardware functions as a kind of law. That
we should understand code as kind of law, because code can restrict or
enable freedoms in just the way law should. And that if we are really con-
cerned about liberty first, then we should protect liberty regardless of the
threats.

I meant that originally as a metaphor. Code is not literally law; code, I
argued, was like law. But in the anticircumvention provision of the DMCA,
Congress has turned my metaphor into reality. For what the anticircum-
vention provision says is that building software tools to circumvent code
that is designed to protect content is a felony. If you build code to crack
code, then you have violated the U.S. code. Even if the purpose for which
you are cracking this code is a completely legitimate use of the underly-
ing content. Even if it would be considered fair use, that doesn’t matter.
Cracking code is breaking the law. Code is law.

Let’s take an example. DVD movies are protected by a very poor encryp-
tion algorithm called CSS. To play a DVD movie on a computer requires
unlocking CSS. Programs for unlocking CSS were licensed to manufactur-
ers of Mac and Windows machines. Owners of those machines could there-
fore buy DVD movies, and play those movies on their computers.

People running the GNU/Linux operating system could not. There was
no code to enable CSS to be unlocked under the GNU/Linux operating
system. The owners of CSS had not licensed it to Linux. So a group of
GNU/Linux programmers cracked CSS, and built a routine, deCSS, that
would enable DVD movies to be played on GNU/Linux systems.

Under the anticircumvention provision of the DMCA, that was a crime.
They had built code that cracked a technological protection measure;
building such code violated the law; even though the only behavior
enabled by this code—made more simple by this code than it was before
this code—was the playing of a presumptively legally purchased DVD. No
pirating was enabled; no illegal copying was made any easier; simply
enabling the playing of this movie on a different machine—that’s all deCSS
did; but cracking CSS to enable that legitimate use was a crime.

Now notice what this event represents. Content providers build code
that gives them more control than the law of copyright does over their
content. Any effect to disable that control is a crime. Thus the law backs
up the contents holders’ power to control their content more firmly than
copyright does. Copyright law gets privatized in code; the law backs this
privatized law up; and the result is a radical increase in the control that
the content holder has over his content.

Open Code and Open Societies 355

Control: for this is the essence of the power that code creates here. The
power to control the use of content. The power to control how it is played,
where, on what machines, by whom, how often, with what advertising,
etc. The power to control all this is given to the content holders by the
code that West Coast coders build; and that power gets ratified by the
product of East Coast coders—law.

Now this radical increase in control gets justified in the United States
under the label of “property”; under the label of protecting property
against theft. The idea has emerged that any use of copyrighted material
contrary to the will of content controller is now theft; that perfect
property is the ideal of intellectual property; that perfect control is its
objective.

But that was not Jefferson’s conception; that was not the conception of
the early founders of the balanced package of intellectual property and an
intellectual commons. That was never the idea originally. For the idea
about control over content has always been that we give content providers
enough control to give them the incentive to produce; but what they
produce then falls into the public domain. We given an incentive to
produce new work, but that new work then becomes part of an intellec-
tual commons, for others to draw upon and use as they wish—without the
permission of anyone else—free of the control of an another.

Hollywood has corrupted this vision. It has replaced it with a vision of
perfect control. And it has enforced that vision of perfect control on the
Net, and on laws that regulate the Net. And it is slowly turning the Net
into its space of control.

Consider an example: You all know the meme about the free nature of
the Internet; about how ideas flow freely, about the Net as Jefferson’s
dream. That was its past. Consider a picture of its future.

iCraveTV was an Internet broadcaster in Canada. Under Canadian law,
they were permitted to capture the broadcasts from Canadian television,
and rebroadcast that in any medium they wanted. iCraveTV decided to
rebroadcast that TV across the Internet.

Now free TV is not allowed in the United States. Under U.S. law, the
rebroadcaster must negotiate with the original broadcaster. So iCraveTV
used technologies to block Americans from getting access to iCraveTV.
Canadians were to get access to free TV; Americans were not.

But it is in the nature of the existing architecture of the Net that it is
hard perfectly to control who gets access to what. So there were a number
of Americans who were able to get access to iCraveTV, despite the
company’s efforts to block foreigners.

356 Lawrence Lessig

Hollywood didn’t like this much. So as quickly as you could say “cut,”
it had filed a lawsuit in a Pittsburgh federal court, asking that court to shut
down the Canadian site. The argument was this: whether or not free TV
is legal in Canada, it is not legal in the United States. And so since some
in the United States might, God forbid, get access to free TV, the United
States Court should shut down free TV. Copyright laws in the United States
were being violated; massive and quick response by the federal courts was
called for.

Now step back for a moment and think about the equivalent claim being
made elsewhere. Imagine, for example, a German court entering a judg-
ment against Amazon.com, ordering Amazon.com to stop selling Mein
Kampf anywhere because someone in Germany had succeeded in access-
ing Mein Kampf from Amazon. Or imagine a court in China ordering an
American ISP to shut down its dissidents’ site, because the speech at issue
was illegal in China. It would take just a second for an American to say
that those suits violate the concept of free speech on the Net; that they
undermine the free flow of information; that they are an improper exten-
sion of state power into the world of cyberspace.

But free speech didn’t register in this Pittsburgh court. The idea of the
rights of Canadians to their free TV didn’t matter. The court ordered the
site shut down, until the site could prove that it could keep non-Canadi-
ans out.

The pattern here should be clear. Though nations like the United
States will sing about the importance of free speech in cyberspace, and
about keeping cyberspace free, when it comes to issues of national
security—as all things copyright are—values fall away. The push will be to
zone the space, to allow rules to be imposed that are local. And the tech-
nologies for zoning and controlling will quickly develop. Technologies of
control, justified under the ideal of property, backed up by law. Technolo-
gies of perfect control, justified under the ideal of property backed up by
law.

This is our future. It is the story of how an open space gets closed. It is
the structure under which the closed society reemerges. Where the few
control access for the many; where the few control content. Where to use,
or play, or criticize, or share content you need the permission of someone
else. Where the commons has been shrunk to nothing. Where everything
to which you have access, you have access because you have asked per-
mission of someone else.

Now software is a kind of content. Like stories, or plays, or poems, or
film, it is content that others use, and others build upon. It is content that

Open Code and Open Societies 357

defines the nature of life in cyberspace. It is code that determines how free
speech is there; how much privacy is protected; how fully access is guar-
anteed. Code legislates all this; code builds this control into its content.

This content, like any content, can exist in the commons, or it can exist
privately, as property. It can exist in a form that guarantees that anyone
can take and use the resource; or can exist in a form that makes it impos-
sible for others to take and use this resource.

Open source or free software is software that lives in a commons. It is a
resource that others can take, and use, without the permission of someone
else; that, like the works of Shakespeare, is there for anyone to use as they
wish without the permission of an owner—take, and use, and build upon
to make something better, or better fitted to the particular needs of a par-
ticular context.

Two things make open code open. First, architecturally, it is open, in the
sense that its source code is available for anyone to take. And second, law
makes it open. In its core sense, open code is required to be kept open;
closing it, or taking it out of the public hands is a violation of the terms
on which it was acquired.

Closed code is different. Closed code—Microsoft’s applications—this
code does not exist in the commons. It is private property. One gets access
only as another permits; one is permitted only as another allows.

Here again, closed is defined along two dimensions. First, architecturally
—the source is not available; second, legally—one is not permitted to crack
and steal the code.

These differences are significant, both for the life of code coded open or
closed. But also for the life of life within the open or closed code. If code
is law, if it functions as law, if it regulates and controls as law, then a crit-
ical difference between open and closed code is the difference of public or
secret law. Who knows the control built into a closed system; who knows
the data that is collected; who know how technology regulates or inter-
feres; who knows what freedom are preserved?

But open code makes these questions transparent. We know the regula-
tions, because the regulator is open. We know the protections, because
coders can see how it works. We know its security, because we can watch
how it protects. We know its trustworthiness, because we can see with
whom it talks.

We know all this because this regulation is transparent. Like the require-
ment of public laws, it assures that the public knows how it is being reg-
ulated. Knows, so it can resist; or knows, so it can change.

358 Lawrence Lessig

I’ve built an architecture in this chapter that has left room for the place
of open and closed code. I have tried to get you to see how our tradition
supports balance—a symbiotic balance between property and a commons,
and especially between intellectual property and an intellectual property;
I’ve tried to describe how all current trends are counter to this balance;
that the push now is to maximize control in the hands of content con-
trolled; perfect control, perpetually assured; and I’ve tried to suggest that
software—code—is content, just as music or Shakespeare is. And that it too
needs to live in this balance between open and closed.

Our challenge—those of us who see this importance in balance, and see
the importance in maintaining balance—is to resist this closing of the
Internet’s mind—to resist this power and control built into content. Our
challenge is to find ways to get people to see the value in the commons as
well as in property.

And open code is the only strong idealism that will get people to see.
Open code is the only place where these ideals live. It is the only place
where we can prove that balance and the commons does something
good—for innovation, for creativity for growth.

Because here is the central blind spot of my culture, and my country.
While we parade around in our certainty that perfect property is perfect
progress—while we insist the East died because it didn’t protect property,
right in our midst is a phenomenon that is inconsistent with this story—
the Internet. A space built on a commons, where because most early
code governing the Net was open code, and where because of the
architectural principle of end-to-end, the network owner could not con-
trol how the Net would be used—the resource of the Net was left open
for innovation; all could draw upon its riches; no one could close another
out.

Upon this architecture of openness; upon this ecology where practically
all was within a commons, the greatest innovation and growth we have
seen was built.

People will see the importance of the commons when we speak about
code. They will see it as we speak about content as code. When we describe
the innovation that gets built on top of open systems like GNU/Linux;
when we point to the past which has proven the value.

But this open content as code will be resisted by those who would close
content: resisted by Hollywood. And the battles that we are just beginning
are battles about whether and how content is kept free. For the model for
content that captures Hollywood’s eye is a model of a closed system, of
closed content, of maximal control.

Open Code and Open Societies 359

An open society must resist this extreme. It must resist a world where to
use and build upon resources from our culture you need the permission of
Hollywood—of someone else.

History has a way of finding irony. It seems to revel in its irony. So, here
is the irony of our time. The ideal that seemed so central to killing the
closed society of yesterday—property—that ideal is now closing the open
society of today. The same tool of freedom of yesterday is becoming a tool
of control today. Not the same control, or the same control to as evil an
end. But, nonetheless, a control on creativity and innovation; a shifting
of that control from individuals to corporations; from anyone to the few.

Only the ideals of the open source and free software movement can resist
this change. Only the values expressed here can show something differ-
ent. Oddly only we—as universities—resist the temptations of large rev-
enues from patents, as science gets corralled by the restrictions of patents,
as culture continues to be captured by property that locks it up.

Only this movement will resist this closing. But to resist it, we must speak
beyond the efficiencies of software, or beyond the significance of those effi-
ciencies. To resist it, we must show how its values, the values of this move-
ment, are the values of free society generally.

Note

The contents of this chapter were presented by Lawrence Lessig (at the time, the

Jack N. and Lillian R. Berkman Professor for Entrepreneurial Legal Studies, Harvard

Law School) as a keynote address for “Free Software—a Model for Society?” on June

1, 2000, in Tutzing, Germany.

360 Lawrence Lessig

19 Legal Aspects of Free and Open Source Software

David McGowan

This chapter is about how the law affects free and open source software
(F/OSS) development. It discusses the basic principles of copyright and con-
tract law relevant to F/OSS development, and the way these legal princi-
ples constitute an environment that sustains the social practices of the
F/OSS communities. It also discusses open legal questions and challenges
they may present for the future.

Section I in this chapter discusses the structure of F/OSS licenses—how
they are designed to work. Section II discusses some issues and questions
regarding this design—whether the licenses actually will work this way if
tested. If you are already familiar with copyright and licensing law, you
might want to skip Section I and go straight to Section II. Section III
discusses two criticisms an influential private firm has leveled at the GNU
General Public License (GPL).

Section I

Whether a program qualifies as F/OSS is in one sense a legal question.
When developers write code and fix it in a tangible medium, copyright law
gives them the exclusive right to reproduce the code, distribute it, and
make works derived from their original work. Subject to some important
exceptions such as fair use, persons who would like to do these things with
code need the author’s permission.1

Authors grant such permission through licenses. The terms “free” soft-
ware or “open source” software refer to software distributed under licenses
with particular sorts of terms. A common reference guide to such licenses
is the “Open Source Definition,” which was originally written by Bruce
Perens and is now maintained by the Open Source Initiative. It sets out
several conditions a license must satisfy if code subject to the license is to
qualify as “open source software.”2

Some aspects of this definition pertain to distribution of code. Programs
distributed under a F/OSS license “must include source code, and must
allow distribution in source code as well as compiled form.” (Posting the
source code on the Internet satisfies this requirement.) Such a license “shall
not restrict any party from selling or giving away the software as a com-
ponent of an aggregate software distribution containing programs from
several different sources,” nor may the license “require a royalty or other
fee for such sale.” An F/OSS license “must allow modifications and derived
works, and must allow them to be distributed under the same terms as the
license of the original software.”3

Much of the attention given to F/OSS development focuses on the GPL’s
requirement that authors who copy and distribute programs based on
GPL’d code (derivative works) must distribute those programs under the
GPL. This requirement is specified in Section 2(b) of the GPL, which is the
copyleft term. I will discuss that term in a moment. In the terminology of
the Free Software Foundation (FSF), licenses that require derivative works
to be Free Software are copyleft licenses. Source-code licenses that allow
free copying but do not contain such a requirement are “Free Software”
licenses but not copyleft licenses.

The Open Source Definition has some more detailed requirements as
well. F/OSS licenses may not discriminate among persons, groups, or fields
of endeavor. Other requirements ensure that programmers get credit (or
blame) for their work. For example, while a license must allow users to
modify the code and make derivative works, it may require them to dis-
tribute modified source code in two parts: the original code as written by
the licensor and, under a separate name or version number, the licensee’s
modifications. The definition also states that F/OSS license terms must not
extend to other software that is merely distributed alongside code subject
to the license. This provision does not pertain to programs that interact
with F/OSS code when executed, rather than merely being distributed with
them.4

Several well-known licenses satisfy the Open Source Definition. I will
start with the most famous, the GNU GPL. The GPL sets out a two-pronged
strategy designed to enforce the norms of F/OSS development. The first is
to have the original author retain the copyright in the author’s code or
assign it to an entity, such as the FSF, that will enforce these norms. The
second is to allow developers to copy, modify, and redistribute the code
only as long as they agree to comply with the GPL’s terms, which embody
at least some of the norms of the F/OSS communities. If a licensee violates
the terms, the authors or their assignees may enforce the norms through

362 David McGowan

a copyright infringement action. Courts routinely enjoin the unlicensed
use of copyrighted works, so the threat of an infringement action is a pow-
erful enforcement tool.5

The GPL helps developers establish and maintain social practices and
understandings that perform a nifty bit of legal jujitsu.6 The GPL employs
copyright to suspend the usual operation of copyright within the domain
of F/OSS development. This effect of the GPL gets most of the press, and
rightly so. Even from a purely legal point of view, in its brevity, its clarity,
and its creative use of rights, the GPL is an elegant piece of work. Better
still, its elegance does not detract from its effectiveness. The GPL is a
working document, too. Here’s how it is designed to work.

The GPL defines two important terms: “the Program” means a work
subject to the license, and “work based on the Program” refers either to
the program “or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it either verbatim or with
modifications and/or translated into another language.” The basic license
term provides that licensees “may copy and distribute verbatim copies of
the Program’s source code as you receive it . . . provided that you conspic-
uously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty, and give any other recip-
ients of the Program a copy of this License along with the Program.”7

Licensees may “modify [their] copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and copy and
distribute such modifications or work” so long as, among other things,
they “cause any work that [they] distribute or publish . . . to be licensed as
a whole at no charge to all third parties under the terms of this License.”8

The license also states that these terms apply to “the modified work as a
whole” but not to “identifiable sections of that work [that] are not derived
from the Program, and can be reasonably considered independent and sep-
arate works in themselves” when such independent works are distributed
on their own. When independent works are distributed “as part of a whole
which is a work based on the Program,” though, they are subject to the
license as it applies to the whole.9 Under this model, “each time you redis-
tribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distrib-
ute or modify the Program subject to these terms and conditions.”

The GPL further provides that a licensee “may not copy, modify, subli-
cense, or distribute the Program except as expressly provided under” the
GPL. “Any attempt otherwise to copy, modify, sublicense or distribute the

Legal Aspects of Free and Open Source Software 363

Program is void, and will automatically terminate your rights under this
License.” In that event, however, “parties who have received copies, or
rights, from you under this License will not have their licenses terminated
so long as such parties” comply with the GPL’s terms.10 As to how the
license binds users in the first place, the GPL says that “by modifying or
distributing the Program (or any work based on the Program), you indi-
cate your acceptance of this License to do so, and all its terms and condi-
tions for copying, distributing or modifying the Program or works based
on it.”11

An illustration may help explain how these terms are designed to work
in practice. Imagine three parties: A, B, and C. Suppose A writes a program
and distributes it to B under the GPL. A either does or does not give B
notice of the GPL terms. If he does, then let us assume that B is bound.12

If A does not give B enough notice to form a binding agreement, then B
might argue that she is not bound, but then she has no license—meaning
no permission–to copy, modify, or distribute A’s code. If B does any of these
things without a license, A may sue her for infringement and ask a court
to enjoin B’s use.

The thing to notice about this part of the structure is that whether B is
“bound” by the GPL is really beside the point. Absent a private deal with
the author, the GPL is the only thing that gives B the right to copy, modify,
or distribute A’s code. If the GPL does not apply to B then, if B does any
of these things, B infringes A’s copyright. It is in B’s interest that the GPL
apply to B, so there is no logical reason for her to fight it.

Suppose B is bound by the GPL and would like to produce and distrib-
ute a work based on A’s program. There are two cases to consider here. (I
will just identify them now; I discuss them in more detail in Section II.)
The first case would arise if B wrote a program in which she copied some
of A’s code and combined it with some new code of her own to form a
single work. Conventional derivative work analysis deals easily with this
case.

The second case would arise if B wrote a program consisting entirely of
her own code but that interacted with A’s code when it was executed.
Derivative work analysis is more complex and controversial in this case. A
might argue that if executing B’s program caused A’s program to be copied
and to interact with B’s program, then the combination of the two pro-
grams amounted to a work based on A’s program, and therefore to a deriv-
ative work under the GPL. (Technically speaking, this claim would be best
analyzed as one where the user infringed A’s right to make derivative works
and B contributed to this infringement by distributing her code.)13 The FSF

364 David McGowan

has taken this position with regard to at least some programs that interact
with GPL’d code.14 Others disagree.15 I discuss this disagreement in Section
II.

For simplicity, I will stick with the first case for now. The GPL gives B
the right to copy A’s code and to modify it to create a derivative work. B’s
copying and modification of the code are therefore lawful.16 B therefore
owns the rights to her contribution to the derivative work—the original
code she wrote herself—and A owns the rights to his code, subject to B’s
GPL rights.17

Suppose B sends her work, containing both A’s original code and B’s new
code, to C. B either does or does not give C enough notice of the GPL terms
to bind C. If she does, C is bound by the GPL. If she does not, A might
assert that B’s failure to give notice to C violated Section One of the GPL.
Whether on that ground or some other, suppose B has violated the GPL.
Her violation terminates her rights from A. B could no longer copy, modify,
or distribute A’s code, including any of A’s code that B copied into B’s deriv-
ative work.

If B tried to do any of these things after her GPL rights terminated, A
could sue B for both breach of the GPL and for infringement. The most
likely result of such a suit would be an injunction preventing B from
copying, modifying, or distributing A’s code. B would still hold the rights
in the code she wrote, which she received by default when she wrote it.
As a practical matter, however, this fact might not mean much to B, whose
code might be worth little or nothing without A’s code.

As to C, if C uses A’s code (whether she received it from B or some other
source) in a manner inconsistent with the GPL, then A may sue C for
infringement. If C adheres to the GPL terms, however, even if she received
it from B, whose GPL rights had terminated, then the GPL grants her a
continuing right to use A’s code.

Section 2(b) of the GPL does not apply to A, who owns all the exclusive
rights in the original code. Indeed, some developers run parallel versions
of a program, with one version being F/OSS and the other being “private.”
As discussed more fully in Section II, this fact presents some risk that A
might release F/OSS code to the community and then attempt to revoke
the GPL rights of his licensees so he could distribute his code solely in
binary form for a profit.

Though A could do this with respect to his own code, he could not com-
mercialize the contributions of developers who improved that code, unless
those developers agreed. As noted previously, if B had A’s permission to
write code forming a derivative work, then B owns the rights to the code

Legal Aspects of Free and Open Source Software 365

she wrote. Subsequent termination of her GPL rights to A’s code does not
change that fact. B is bound by the GPL to release her derivative work
under the GPL, so we may presume as a default matter that A receives the
derivative program as a licensee under the GPL.18 If A chooses to incorpo-
rate B’s code into the original program and take advantage of the improved
derivative work then, as to that code, A is a licensee and is bound by
Section 2(b).

Under the F/OSS model, programs can easily become (indeed, are
designed to be) quilts of code from many different authors, each of whom
owns rights as to which the others are licensees. As a practical matter, for
projects in which more than one developer contributes important work,
at least each major contributor would have to agree to “privatize” the code
if the project were to be taken private in its most current and complete
form. Past a fairly small scale, the web of intersecting and blocking copy-
rights the GPL creates would make it very hard for any developer to use
the code for strategic or anticompetitive purposes.

The GNU project also has created the GNU Lesser General Public License
(LGPL), which is designed for certain software libraries “in order to permit
linking those libraries into non-free programs.” A commercial developer
wishing to write programs that interact with GPL’d code might balk at the
risk that a court would accept the FSF’s interpretation of the GPL and, in
at least some cases, treat the developer’s program as an infringement of the
GPL author’s right to make derivative works. Some programs are more valu-
able if a large number of complementary programs work with them. Some
developers therefore might wish to enhance the popularity of their pro-
grams by giving commercial firms the option of using F/OSS programs
without subjecting the firms’ conventionally licensed code to F/OSS
treatment.19

To achieve this goal, the LGPL distinguishes between programs that
contain library material or are derived from library material (a “work based
on the library”) and those designed to be compiled or linked with the
library (a “work that uses the library”). The LGPL provides that works based
on a library may be distributed only subject to restrictions similar to those
of the GPL.20

As to a work that uses a library, the LGPL says that “in isolation,” such
a work “is not a derivative work of the Library, and therefore falls outside
the scope of this License.” It also says, however, that “linking a ‘work that
uses the Library’ with the Library creates an executable that is a derivative
of the Library (because it contains portions of the Library), rather than a
‘work that uses the library.’” Nevertheless, the LGPL allows a developer to

366 David McGowan

“combine or link a ‘work that uses the Library’ with the Library to produce
a work containing portions of the Library, and distribute that work under
terms of [the developer’s] choice, provided that the terms permit modifi-
cation of the work for the customer’s own use and reverse engineering for
debugging such modifications.” A developer who pursues this course must
comply with additional conditions.21

As I mentioned earlier, many licenses besides the GPL comply with the
Open Source Definition. (As of this writing, the definition lists more than
40 compliant licenses.) The other licenses tend to get less press, though,
because many of them impose few obligations on licensees, so no one has
anything to complain about. The BSD and MIT licenses are examples here.
These licenses allow unlimited use of the programs they cover, subject only
to obligations to include a copyright notice when distributing the program,
a disclaimer of warranties, and for the BSD license, a requirement that the
rightsholder’s permission be given before the author’s name can be used
in advertising a work derived from code subject to the license. In this
regard, the Apache license is similar to the BSD license.

The important general points are that these are nonexclusive licenses,
which means that the original author may grant particular users greater
rights than are contained in the standard form license, and that without
the licenses the legal default rule is that users cannot copy, modify, or dis-
tribute code. That means the licenses make users better off than they would
be with only the default copyright rule, and the original author has the
power to negotiate private transactions that make users better off than they
would be with the standard F/OSS license.

Section II

This section discusses whether in practice F/OSS licenses will work as
designed. I divide the issues between contract questions and intellectual
property questions.

Contract Law
The key to F/OSS production is the way copyrights are deployed by the
various licenses. The legal status of those licenses is therefore an impor-
tant question, which I explore here using the GPL as an example.

Are F/OSS Licenses Really Contracts? Contract analysis must begin with
the copyright default rule. Absent the author’s permission, or a defense
such as fair use, users have no legal right to copy, modify, or distribute

Legal Aspects of Free and Open Source Software 367

code. That is true regardless how a user acquires the code; the copyright
gives the author rights against the world. That is why, as noted earlier, a
downstream user would want the GPL to be enforceable, to give the user
a defense against an infringement action. At this level, there is really no
question whether the GPL works. The code to which it applies is subject
to the author’s default legal rights, just like any other copyrighted work.

For this reason, the term “contract” fits somewhat awkwardly with F/OSS
practices. Contracts involve bargains, which require that the contracting
parties exchange something. What do users give authors of GPL’d code?
The GPL itself does not seem to obligate users to give the author anything.
Indeed, with the exception of the warranty disclaimer, the license does not
cover the act of running the code. Only copying, distribution, and modi-
fication are subject to its conditions. In this sense, the GPL is just a per-
mission to use code.22 Because it demands no bargain, one could argue that
the GPL cannot form a “real” contract.

The difference between granting someone the permission to use code
and striking a bargain for its use might seem unimportant, and in most
cases it probably is. The difference might be important, though, if a user
tried to sue an author on the ground that GPL’d code caused the user harm.
A user might try to draw an analogy to real property cases, where property
owners owe licensees a duty not to harm them through gross negligence
and to warn them of defects in the property, or of dangerous activities on
the property, of which the owner is aware but the licensee is not.23 Or a
user might try to rely on laws imposing general duties of care, or to draw
an analogy to cases extending duties to anyone who uses property with
permission.24

Like F/OSS licenses generally, the GPL ends with a disclaimer of war-
ranties. It makes clear that the author does not vouch for the code and will
not pay damages if the code causes harm; users use the code at their own
risk.25 F/OSS code is relatively transparent, and persons who use it are likely
well enough informed to fall within the class of persons who know or
should know of any dangers in the code, so the risk of liability probably
is low. The warranty disclaimer in the GPL might avoid litigation over such
matters, though, or at least limit damages in the unlikely event someone
files suit.

To the extent a court might otherwise find that authors of GPL’d code
owe users a duty, one might find a “bargain” in the users’ agreement to
relinquish rights in their favor, which a duty might create, in exchange for
the rights to use the code. If the requirements of contract formation are
met, such disclaimers would work to protect authors against claims for eco-

368 David McGowan

nomic harm.26 There are other situations in which the GPL’s status as a
contract might be relevant. A small group of developers who actually
agreed to share work on a joint project might use the GPL to memorialize
their agreement. Or an author might try to terminate the license she
granted, and a user might want to use contract or contractlike theories to
fight back. In each case, the user would be better off if the court treated
the license as a contract. It is therefore worth taking a moment to consider
how the GPL fares under traditional contract formation principles.

Can a Contract Really Be Formed This Way? As long as authors follow its
terms, the GPL fares quite well under conventional contract formation
principles. No unusual doctrines or new laws are needed to accommodate
it.

The default rule of formation is that a contract may be formed “in any
manner sufficient to show agreement, including conduct by the parties
which recognizes the existence of such a contract.”27 A licensor may form
a contract by giving users upfront notice that their use will be subject to
certain license terms, and then allowing users to accept these terms by
clicking through dialogue boxes or breaking a shrinkwrap seal.28 There is
no reason why using the software could not count as acceptance of the
license terms so long as the user had notice of the terms and the chance
to read them before using the code. (Whether particular terms may be
enforced in particular cases is, and should be, a separate question.)

The key is to adopt a sensible approach to notice. We do this in physi-
cal space all the time. Persons who receive printed forms and do not
read them understand that they are agreeing to the substance of the
transaction—parking or renting a car, flying on a plane, obtaining a credit
card, and so on—plus some contract terms of unknown content. They
know that they do not know all the relevant terms, and they willingly
proceed on that basis.29 Persons in such circumstances are protected from
opportunism and abuse by doctrines such as unconscionability and unfair
surprise.30

As long as authors do what it says, the GPL works well within the exist-
ing model of contract formation. Section 1 of the GPL requires licensees
to publish “conspicuously and appropriately . . . on each copy” of code
they distribute “an appropriate copyright notice and disclaimer of war-
ranty” and to “give any other recipients of the Program a copy of” the GPL.
Those distributing modified code must comply with this term as well and,
if the code works interactively, must cause the modified code to display a
copyright notice when it is run and tell users how to view a copy of the

Legal Aspects of Free and Open Source Software 369

GPL.31 If authors comply with these terms, downstream users should be
aware of the GPL’s conditions when they use GPL’d code.

If everyone is doing what the GPL says they are supposed to do, and the
terms of the GPL are placed on distributed code, the formation question
resembles a standard form contract situation. The GPL does not require a
user to click through a dialogue box, of course, but there is nothing talis-
manic about that method. It is just one way of making sure that users have
notice of license terms and, as importantly, of helping authors demonstrate
to a court that they did. The key is to give users notice of the GPL terms
in a way that they cannot help but see them, or make a conscious choice
to skip over them, before they begin using the code.

A developer who released code with a reference to the GPL and a link to
its terms would not comply with the GPL’s notice requirement, and would
run a greater risk of formation problems. (The link might go dead, for
example.) Some developers might follow such an approach, however, and
there is still a chance it would be effective as between the original author
(who is not bound by the notice requirement of the GPL) and that author’s
licensees.32 Though a recent case found that a link at the bottom of a screen
did not provide users enough notice that the code they downloaded was
subject to a license,33 when GPL’d code is circulated among developers who
are familiar with F/OSS norms and practices, a reference to the GPL com-
bined with a link to a Web page posting its full terms might be sufficiently
well understood to justify an inference of assent, even if the full terms of
the GPL were not included on each copy of the code.

Does It Matter If You Don’t Deal with the Author? A related issue is privity
of contract. The basic idea is that only a person who has rights can grant
them. If I do not have the author’s rights in the original code, but only
that the GPL’s grant of conditional permission to use the code, then how
can I give you rights to the code? You can’t give what you don’t have.
Because of this concern, Professor Robert Merges has suggested that the
GPL may not bind downstream users who take code from someone other
than the rightsholder.34

I do not think this is a significant worry for GPL users, however. The GPL
is a nonexclusive, transferable license. It grants licensees the power to dis-
tribute code so long as they include the GPL’s terms with the distribution.
It makes sense to view redistribution of GPL’d code as simply a transfer
within the terms of the original license. An analogy might be drawn to a
licensee who holds the rights to distribute a movie in North America, who
contracts with regional distributors, who may then contract with individ-

370 David McGowan

ual venues to show the work. In addition, one may view authors of deriv-
ative works as the licensors of at least their improvements to a program,
and perhaps of the derivative work as a whole (though this latter point is
less clear). A court holding this view of matters would probably not view
a lack of privity as a barrier to an enforceable agreement.

Are the Rights Irrevocable? No. The GPL states no term for the rights it
grants. Two courts of appeal have held that a license that states no term
is terminable according to whatever state law governs the contract.35 In
one case that meant the license was terminable at the licensor’s will.36

Another court, the Ninth Circuit Court of Appeals, which covers the West
Coast, concluded that a license that states no term has an implicit term of
35 years.37 That court based this odd holding on a provision in the Copy-
right Act that gives authors a five-year window (beginning in the 35th year)
to terminate a license agreement regardless of the license terms or state
contract law.38 The court’s statutory interpretation was poor, however.
Other courts have declined to follow it on this point, and they are right.
Outside the Ninth Circuit, it is best to presume that rights holders may ter-
minate the rights of GPL licensees pursuant to applicable state law, which
may mean termination at will in many cases.39

At least in theory, the ability to terminate at will poses a risk of oppor-
tunistic behavior by rights holders. Termination might or might not
present a very great practical risk, depending on the code in question. An
initial author could terminate the GPL rights she had granted to use and
modify her code, but not the rights licensees had in the code they wrote
to form a derivative work.40

So, to return to our earlier example, if B wrote a derivative work that
used A’s code, and if A may terminate the GPL rights he grants, then A
may prevent B from distributing A’s original code in B’s derivative work.
Termination presumably would be effective as against persons receiving B’s
work under the GPL, for B could not give them greater rights to A’s code
than B had herself. B could, though, continue to distribute her own code,
as to which she holds the rights. Whether A’s termination was a large blow
to the project as a whole would depend on how important his original
code was. Whether B’s code would be worth anything without A’s would
depend on the same thing.

Whether A would be likely to terminate would depend at least in part
on whether he needed to use B’s code, because a termination by A could
invite reciprocal termination by B. Projects that incorporate code
from many authors, therefore, seem unlikely candidates for unilateral

Legal Aspects of Free and Open Source Software 371

termination. And for projects to which the community has chosen not to
contribute its efforts, privatization might do little to disrupt community
norms.

So far as I know, the risk of GPL termination is almost completely the-
oretical. (I discuss in the next section the only case in which it was even
slightly tangible.) There is no reason for panic. Future iterations of the GPL
and other licenses may well address this question.

Can the Rights Holder Assign the Rights? What Implications Do Assign-
ments Have? Authors of F/OSS code may assign their rights. An author
might want to assign the rights to an organization willing to police license
violations, for example. The organization could then monitor use of the
code and take enforcement action where necessary. The FSF serves this role
for some projects.41

Assignments also might be relevant if developers were sued for distrib-
uting code. This issue came up in a suit prompted by a hack of “CyberPa-
trol,” an Internet filter marketed by Microsystems, Inc.42 In early 2000,
Eddy L.O. Jansson, working from Sweden, and Matthew Skala, working
from Canada, decided to take CyberPatrol apart to see how it worked. They
were particularly interested in what sites it blocked.

Their efforts produced four things, which they released as package enti-
tled cp4break. The first was an essay called The Breaking of CyberPatrol® 4.43

This essay described in some detail the process by which Jansson and Skala
were able to discover the encryption and decryption code protecting the
filter’s database of blocked sites, and how they were able to break the
encryption. In addition to the essay, Jansson and Skala released three pro-
grams. One of these programs, called cphack.exe, was released in both
source and binary code form, and was written to run on Windows. One
source file in that program stated: “CPHack v0.1.0 by Eddy L O
Jansson/Released under the GPL.” Jansson added this message on his own;
he meant to tell Skala he had done so, but he forgot.

Microsystems responded to the distribution of the cp4break package
with a suit against Jansson and Skala for copyright infringement, breach
of contract, and interference with prospective economic advantage. A trial
court in Boston issued a temporary restraining order against the defen-
dants.44 Jansson and Skala did not want to litigate; Microsystems wanted
the strongest legal tools possible to prevent distribution of the code. The
parties agreed on a settlement with several terms, one of which was that
Jansson and Skala assign their rights in the code to Microsystems, which
could then (at least in theory) attempt to terminate any rights created by

372 David McGowan

the GPL and proceed on a copyright infringement theory against anyone
posting the code.

When news of the settlement broke, media reports questioned whether
Jansson and Skala could assign exclusive rights in cphack.exe to Microsys-
tems after having placed a reference to the GPL on the code. Some accounts
reported statements that rights transferred by the GPL are irrevocable.45 As
noted earlier, that is an overstatement. The common law contract rule
might allow termination of rights at the will of either party.

Either a prior assignment of exclusive rights or a fixed license term might
make it hard for developers like Jansson and Skala to settle such cases.
Suppose Jansson and Skala had assigned the rights to cphack.exe to an entity
formed to administer GPL rights in the interests of the F/OSS communi-
ties. What would have happened then? Microsystems no doubt would have
sued the two hackers anyway. But Jansson and Skala would not have been
able to assign the rights in cphack.exe to Microsystems, because they would
not have had the rights. Microsystems might have settled for an agreement
that Jansson and Skala leave their products alone. If Microsystems really
cared about an assignment, however, then Jansson and Skala might not
have been able to settle the case as quickly and easily as they did. They
would have had to rely on their assignee to assign the rights to the plain-
tiff to settle the suit.

Similar problems might arise if Jansson and Skala’s rights were subject
to a fixed term. In that case, their assignment to Microsystems might be
subject to that term, which might make the assignment less attractive to
Microsystems and make the case harder to settle.46 For these reasons, the
questions of assignment and the ability of authors to terminate GPL rights
represent areas of potential tension between the interests of individual
authors and the interests of the F/OSS communities.

Intellectual Property Rights
F/OSS production is based on copyright. Even the GPL could not enforce
its conditions on copying, modification, and distribution of code without
the right to exclude that authors obtain when they fix their work in a tan-
gible medium. Without copyright, there is no copyleft. Even more per-
missive licenses, such as the BSD or MIT licenses, require the right to
exclude to enforce the few conditions those licenses impose.

There is no reason to expect F/OSS development to free itself from copy-
right.47 If we assume there will always be opportunistic persons or firms
who might try to appropriate a base of F/OSS code for use in a proprietary
program, then F/OSS production will always have to rely on the right to

Legal Aspects of Free and Open Source Software 373

exclude being vested in a person or entity willing to wield that right to
enforce community norms and thwart appropriation of the community’s
work. Otherwise developers might find themselves underwriting someone
else’s profit margins. Developers might do quite a lot of work simply for
the joy of it, but their views might change if someone else were free-riding
to profit from their labor.

The F/OSS model creates some copyright issues, however. Perhaps the
thorniest issue comes up when a developer writes a program that works
with GPL’d code but the developer does not want to release that program
under the GPL. This question falls under the more general topic of the way
the GPL relates to derivative works.

Three portions of the GPL are relevant to the derivative works issue. The
GPL defines the phrase “work based on the program,” which includes
“either the [GPL’d] Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either ver-
batim or with modifications and/or translated into another language.”
Section 2 of the GPL states that a licensee “may modify your copy . . . of
the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications” if the licensee causes
“any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.” In sub-
stance, these terms express the view that any program that qualifies under
copyright standards as a work derived from a GPL’d work must itself be
released under the GPL.

The Copyright Act defines a derivative work as one “based upon one or
more preexisting works. . . .” The concept includes some specified cate-
gories not relevant here and a catch-all provision encompassing “any . . .
form in which a work may be recast, transformed, or adapted.”48 A work
“is not derivative unless it has been substantially copied from the prior
work.”49 The right to make derivative works therefore overlaps the right to
make copies; substantial copying exists at least where an author could
maintain an infringement action based on the derivative author’s
copying.50 The right to make derivative works is different, though, because
it may be infringed even by adaptations or transformations that are not
fixed in a tangible medium. The right to copy is not violated unless the
copy is fixed.51

As noted earlier, there are two ways a program might constitute a work
based on a GPL’d program, and thus be treated as a derivative work. The
first is uncontroversial. If in writing her program B copies substantially

374 David McGowan

from A’s GPL’d program, then B has met the copying requirement and her
program will be a work derived from A’s program. If B does not have
either A’s permission to copy A’s code or a defense for her copying (such
as fair use), then B’s production of her program violates A’s right to produce
derivative works. B may be enjoined from distributing her program,
even if she transforms or adapts to new purposes the code she has copied
from A.52

What if B does not copy A’s code but writes a program that, when exe-
cuted, invokes A’s code and combines with it to perform some function?
This question is harder than the first, and the answer to it is the subject
of some controversy within the F/OSS communities.

The FSF has taken the position that, in at least some cases, a program is
subject to the GPL if it combines with GPL’d code when it is executed. The
argument is that the combination of the two programs constitutes a deriv-
ative work based on the GPL’d program.53 The quotations in Part I from
the LGPL reflect this reasoning. In the only reported case in which this
issue arose, the court enjoined on trademark grounds the distribution of a
program that worked with GPL’d code. The court said the “[a]ffidavits sub-
mitted by the parties’ experts raise a factual dispute concerning whether
the . . . program is a derivative or an independent and separate work under
GPL ¶ 2.”54 The case settled without judicial resolution of this issue.

I am sympathetic to the FSF’s position on this issue. In simplest terms,
the FSF defends the proposition that authors should not have to share the
product of their labor with people who will not share with them. The key
concept here is the consent of the author (who is free to negotiate a deal
under different terms if he chooses), so one could generalize this proposi-
tion to say that authors should not be forced to allow others to use their
code in cases where authors do not consent to the use.

That proposition in turn could be justified by Locke’s theory of property,
which holds that persons have property rights in themselves, thus in their
labor, and thus in the products of their labor, at least so long as their pro-
duction does not diminish the quality or quantity of inputs in the
common, and thus available to others.55 One could even add that in Eldred
v. Ashcroft, Justice Ginsburg cited as one basis for upholding the Copyright
Term Extension Act a congressional history of taking into account con-
cerns of “justice” and “equity” for authors.56

I suspect many free software advocates would object to this line of argu-
ment, however, and it does have its problems. Copyright is more often
described as a utilitarian reward system than the embodiment of Lockean
theory,57 and there are utilitarian objections to this approach. There are

Legal Aspects of Free and Open Source Software 375

also significant doctrinal problems. Nevertheless, there is some doctrinal
support for the FSF’s position, which I will discuss before discussing the
problems.

The key to analyzing this question is to identify the original work and
the alleged derivative work so the relationship between the two can be
examined in relation to the author’s rights. Micro Star v. FormGen, Inc.,
demonstrates the type of analysis needed. That case dealt with the “Duke
Nukem” video game. As sold in stores, the game included 29 levels and a
utility that allowed players to create their own levels. Players did this by
writing files that worked with the Duke Nukem game engine and art
library. When executed, player files would instruct the game engine what
to retrieve from the art library and how to deploy those images to create
the new level. The product of these interactions was a new, player-created,
Duke Nukem game level.58

FormGen encouraged players to post their levels on the Internet. Micro
Star downloaded 300 of these player files, burned them onto a CD, and
sold the CD commercially. It then filed suit seeking a judicial declaration
that its activities did not infringe FormGen’s rights; FormGen counter-
claimed for infringement, asking the court to enjoin distribution of Micro
Star’s CD. FormGen claimed the derivative works at issue were “the audio-
visual displays generated when” its Duke Nukem code was “run in con-
junction with” the player-generated files Micro Star distributed.59

Micro Star tried to place FormGen between Scylla and Charybdis by
advancing two arguments relevant here. An earlier case had held that a
work could not be a derivative work unless it was distributed “in a con-
crete or permanent form.”60 If the derivative work in question was the
audiovisual display generated when a player file was executed, Micro Star
said, then it did not distribute that work at all, much less in a concrete or
permanent form. Micro Star only copied and distributed player files that,
when executed in conjunction with FormGen’s own code, helped gener-
ate the infringing display.

The court rejected this argument on the ground that the infringing
audiovisual displays were “in the [player] files themselves,” and Micro Star
had fixed those files to its CDs. The court understood that the files did not
preserve the infringing displays as such, but it thought the displays were
“in” the files because “the audiovisual display that appears on the com-
puter monitor when a [player-written] level is played is described—in ex-
act detail—by” a file fixed on Micro Star’s CD. The court later said that
“[b]ecause the audiovisual displays assume a concrete or permanent form
in the . . . files,” the precedent in question “stands as no bar to finding that

376 David McGowan

they are derivative works.”61 The italicized language treats the code and the
output as one and the same, an approach congenial to the FSF’s view.

Having avoided Scylla, however, the opinion was dangerously close to
being swallowed by Charybdis, in the form of the rule that a work is not
derivative unless it copies from the original. Micro Star’s CDs included only
the players’ code, which FormGen had not written. The player’s code
invoked FormGen’s art library but did not include any material copied
from that library. Micro Star pointed out that “[a] work will be considered
a derivative work only if it would be considered an infringing work if the
material which it has derived from a prior work had been taken without
the consent of a copyright proprietor of such prior work,” and argued that
because the player files did not copy FormGen’s code they could not be
derivative works.62

The court rejected this argument on the ground that the original work
at issue was the Duke Nukem “story,” which Micro Star infringed by dis-
tributing code that, when executed with FormGen’s code, generated what
were in effect sequels to that story. The court noted that the player-written
files at issue would work only with FormGen’s code, and said in passing
that if these files could be used by some other program to generate some
other story, there would in that case be no infringement of FormGen’s
rights.63

This qualification suggests that the opinion is best understood as apply-
ing a contributory infringement theory of liability, though the court did
not decide the case on that ground. If it is the display that infringes, then
the infringer is the person who creates the display. In Micro Star, that would
be the player who runs Micro Star’s player-developed files in conjunction
with the Duke Nukem game. Micro Star might be liable for contributing
to this infringement by distributing the files, but then its liability would
depend on whether the files had substantial noninfringing uses.64 Because
the player files could not work with any other program, that issue would
have been decided in FormGen’s favor, meaning the court reached a sen-
sible result on the facts before it, even if one might debate its doctrinal
analysis.

Micro Star offers some support for treating works that interact with GPL’d
code as derivative works subject to the GPL. The court did find that a
program not copied from an author’s code could be enjoined as infring-
ing the author’s right to create derivative works because the program pro-
duced an infringing audiovisual display when executed in conjunction
with the author’s code. To that extent, it supports the proposition that a
work may infringe the right to create derivative works by interacting with

Legal Aspects of Free and Open Source Software 377

an existing program. In addition, the earlier case that held a derivative
work must assume a concrete or relatively permanent form, a rule that
presents a problem for the idea that interoperation creates a derivative
work, was probably wrong on that point.65 Micro Star undercut the earlier
holding, thus strengthening the case for the FSF’s position.

If one takes seriously the notion that the derivative work at issue was
the audiovisual display of a “sequel” to the Duke Nukem “story,” however,
then the point of the case is the output and its relation to a protected story,
not the interaction of code. On this reading, the case does not imply any-
thing about the interaction of code that does not produce infringing
output.

One could of course try to extend this holding to cases where code inter-
acted but did not produce infringing output. There is some authority for
that extension. In Dun and Bradstreet Software Services, Inc. v. Grace Con-
sulting, Inc.,66 the Third Circuit found infringement as a matter of law
where a consultant both copied and modified code and wrote programs
that invoked the rightsholders’ code when executed.67 Because the case
involved literal copying and license violations as well as the writing of pro-
grams that interacted with the plaintiff’s code, and because the defendant’s
programs appeared to function as substitutes for upgrades to the plaintiff’s
original programs, rather than as complements, it is hard to determine the
opinion’s reach on the derivative works issue. Nevertheless, in Dun and
Bradstreet there was no infringing output similar to the audiovisual display
at issue in Micro Star (the output most clearly at issue was a W-2), so it fits
better with the FSF’s position than does Micro Star.

Notwithstanding this authority, there are problems with the proposition
that one creates a work derivative of a program just by writing another
program that interacts with it. At the simplest level, neither the statutory
language nor the language of the GPL supports the argument very well. It
is a stretch to say that a program that interacts with GPL’d code “recast[s],
transform[s], or adapt[s]” that code, as the statutory language requires.68 It
is more natural to say the program simply runs the code, causing it to do
no more than it was designed to do in the way it was designed to do it.
And, as the general counsel of the Open Source Initiative has pointed out,
the GPL does not refer to “combining” one work with another.69 The def-
inition of a “work based on a program” piggybacks on the legal definition
of derivative works, and the copyleft provision itself refers to a work that
“contains or is derived from the Program.”70

Piggybacking on that legal definition creates problems, because programs
that work with GPL’d code but do not copy from it do not, standing alone,

378 David McGowan

satisfy the requirement that a derivative work copy from the original. That
means the programs are not in and of themselves derivative works, which
is indeed the position taken in the LGPL. But if it is only the combination
of the programs that is the infringing work, then the person who com-
bines them is the infringer. On the FSF’s account it is the individual user
who infringes; the author of the program that works with GPL’d code is at
worst a contributory infringer.

Because the derivative works argument in this context is a contributory
infringement argument, it is subject to two defenses. Both these defenses
rest on the facts of particular cases, so they cut against general statements
that invoking GPL’d code creates a derivative work. They do not mean
interoperation cannot create a derivative work, but they call into question
the proposition that it always does.

First, if users who create the combined work by executing the programs
have a defense, such as fair use, then there is no infringement. In that
case, the author of the program that works with GPL’d code would not be
liable; one cannot be liable for contributing to something that did not
happen.71

Second, the author would not be liable for contributory infringement if
the program in question had substantial noninfringing uses. For example,
suppose the program at issue combines both with GPL’d code written by
an author who claims the combination is a derivative work and with other
programs not subject to the GPL, or with other GPL’d programs whose
authors do not object to interoperation. Assume these facts mean that, in
those applications, the program does not infringe anything. In that case,
the program would not be subject to liability for contributory infringe-
ment on the ground that some infringing uses should not stifle develop-
ment and distribution of devices that do more than break the law.72

Perhaps more fundamentally, the economic justification for the deriva-
tive right weakens when it is extended to a program that does no more
than cause another program to run as it was intended to run. Actual trans-
formations or adaptations of a program satisfy demand in different ways
than does the original. As the Micro Star court’s analogy to movie sequels
pointed out, players who purchased the original 29 levels of Duke Nukem
got added value from the additional levels written by other players, which
amounted to “new” stories. A utility that sped up or slowed down play by
altering data generated by the game might add that kind of value, too.

In those cases, the derivative right allows the author to capture revenues
from the value added by transforming their original work. Authors could
not capture that revenue in their original sale, because they did not sell

Legal Aspects of Free and Open Source Software 379

the transformed work. When a program is not adapted to do anything
other than what it is originally distributed to do, though, there is no adap-
tation or transformation value added for the original author to capture.
The author presumably charged in the original sale the profit-maximizing
price for ordinary uses of his program, so there is at best a weak case for
treating as derivative works programs that do no more than invoke the
ordinary operations of his original program.73

Against this point, one might say such concerns are irrelevant to F/OSS
development. Unlike conventional commercial development, F/OSS devel-
opment is not about capturing all the monetary value of one’s work, but
about the principle of share and share alike. This difference is real and it
is important. It is a difference in the way different developers use copy-
right law, however. It is not a difference embodied in the law itself. For a
court to treat programs that combine with a GPL’d program as derivative
works of that program, the court would either have to extend the deriva-
tive works concept as a whole beyond the economic rationale that justi-
fies it in ordinary cases or create a special rule for F/OSS programs. The
Copyright Act provides one definition for all derivative works, though.
Neither that definition nor the cases interpreting it supply a premise that
might justify such a distinction.

A significant strength of the GPL with regard to other issues is that it
requires no such special treatment. It implements the principle of “share
and share alike” using doctrines and arguments no conventional developer
could protest. In such cases, developers using the GPL can do quite well
asking judges to do just what they normally do in copyright cases. That
would not be true if the developer had to ask the judge—a busy general-
ist who probably is not familiar with software development—to distinguish
F/OSS cases from other cases.

Lastly, there is a utilitarian concern. A rule that one program may form
a derivative work of another by interacting with it would make it harder
for developers to write interoperable programs. Cases have recognized a
fair use defense to infringement where transformative users copied code in
the process of reverse engineering to gain access to uncopyrightable inter-
faces, to which they then wrote programs. The defense extends to copying
needed to test such programs to make sure they would work with hard-
ware such as a game console.74

The copying of copyrighted material at issue in these cases was ancillary
to the development of programs that worked with unprotected interfaces,
so the letter of these holdings does not extend to routine copying of pro-
tected code, which is the problem raised by a program that interacts with

380 David McGowan

another program. Still, the leading case said the increase in computer
games compatible with a particular console—an increase attributable to
reverse engineering and the copying it entailed—was a “public benefit.”
The court also said “it is precisely this growth in creative expression, based
on the dissemination of other creative works and the unprotected ideas
contained in those works, that the Copyright Act was intended to
promote.”75 It is possible that these cases undervalue competition between
platforms and de facto standards and overvalue competition within
them.76 Regardless of whether that is true, the concerns these cases express
are legitimate and, in any event, are reflected in current copyright
doctrine.

The position that works that combine with GPL’d code are derivative
works of that code is in tension with the values these courts cited in
holding that reverse engineering to achieve interoperability is a fair use of
copyrighted works. It is true that developers who write programs that work
with GPL’d code are free to release their programs under the GPL, thus
eliminating the concern, but it is often true that an independent devel-
oper could achieve interoperability by taking a license. From the perspec-
tive of copyright policy, the question is how far the author’s rights should
extend into the space surrounding their work.

No court has actually decided this question, so it would be a mistake to
suggest there is a clear-cut answer. Nevertheless, current doctrine and
utilitarian considerations suggest that courts are not likely to extend the
derivative works concept to programs that interact with a GPL’d program
but that are neither created by copying code from it nor transform it into
something analogous to a sequel. There might be unusual cases in which
it makes sense to treat interoperation as the creation of a derivative work.
Whether there are and what they might be will have to be worked out by
judges in the context of the facts of particular cases.

Section III

Debates over F/OSS development practices and licenses have become
common as the GNU/Linux operating system has become more popular,
and conventional firms such as Microsoft have come to see the F/OSS com-
munities as more of a threat to their business models. Much of this debate
concerns general matters of social ethics or economics, which are addressed
elsewhere in this volume. Some of it concerns legal issues, a couple of
which warrant brief comment here. The main point is that the most promi-
nent legal criticisms of the GPL are actually criticisms of copyright; they

Legal Aspects of Free and Open Source Software 381

do not establish any difference between code distributed under conven-
tional licenses and code distributed under the GPL.

The first criticism is that the GPL is a “viral” license that might “infect”
proprietary programs. Microsoft at one time posted a FAQ that said the
GPL “attempts to subject independently created code (and associated
intellectual property) to the terms of the GPL if it is used in certain
ways together with GPL code.” On this view, “a business that combines
and distributes GPL code with its own proprietary code may be obligated
to share with the rest of the world valuable intellectual property (includ-
ing patent) rights in both code bases on a royalty-free basis.” Variations
on this theme run throughout the FAQ and statements by Microsoft
executives.77

There is no reason to believe the GPL could somehow force into the
F/OSS worlds code a private firm wanted to treat as a commercial product.
At worst, whoever held the rights to a GPL’d program could try to enjoin
the firm from distributing commercially a program that combined with
the GPL’d code to form a derivative work, and to recover damages for
infringement.78 In cases where a program actually copied code from a
GPL’d program, such a suit would be a perfectly ordinary assertion of copy-
right, which most private firms would defend if the shoe were on the other
foot. A commercial firm producing a program that created a derivative
work because it copied a GPL’d program could avoid such litigation by
writing its own code instead of copying someone else’s.

The criticism is really directed at the second type of derivative work argu-
ment, based on interoperation, which I discussed in Section II. If courts
adopted a special definition of derivative works that applied only to F/OSS
code, then the “viral” criticism might make a legitimate point against the
GPL that would not apply equally to conventionally licensed code. There
is little if any chance that courts will do that, though. If courts reject the
general idea that interoperation alone creates a derivative work, the “viral”
criticism is moot. If courts adopt that general view, then the resulting doc-
trine of derivative works would apply equally to both F/OSS and conven-
tionally licensed code.

Even in that case, however, so long as a firm did not infringe any rights
when it was writing a program that created a derivative work when exe-
cuted (as opposed to a program that constituted a derivative work because
it contained copied code), the firm would still hold the rights in its work.
The program itself would not be a derivative work; at worst, it would be a
tool that contributed to the infringing creation of a derivative work by the
user who executed the program in conjunction with GPL’d code.

382 David McGowan

If the program at issue worked with programs other than the GPL’d
program written by our hypothetical plaintiff, then the firm might be able
to establish that the program had substantial noninfringing uses, which
would defeat the contributory infringement claim.79 Even if the firm were
found liable for contributory infringement, in this type of case there is no
reason to believe such a finding would deprive the firm of its rights in its
work, rather than subjecting it to an injunction against distribution and
to damages.80

Microsoft’s FAQ also suggests that the GPL’s disclaimer of warranties
leaves users vulnerable in the event a GPL distribution infringes a third
party’s rights. This point is partly sound.81 The true author would not be
bound by the GPL, which would therefore provide users no defense if she
asserted her rights. And it is possible that the disclaimers in the GPL might
prevent users from seeking recourse against whomever gave them the code
under the GPL. Commercial vendors commonly disclaim warranties, too,
though, including warranties of noninfringement.82 This risk is therefore
properly attributable to copyright licensing practices generally, rather than
to the GPL in particular.

Conclusion

As a legal matter, F/OSS production confirms the wonderful versatility of
a system that creates general property rights and allows individuals to
deploy them in the ways that best suit their needs. F/OSS production rests
ultimately on the right to exclude, but the point of the right in F/OSS com-
munities is that it is not used. Like the sword of Damocles, the point is
not that it falls, but that it hangs.

The main point of F/OSS licenses and practices is the social structure
they support—the opportunities they create, the practices they enable, and
the practices they forbid. The achievements of the F/OSS communities are,
of course, mostly a testament to the community members who have taken
advantage of the opportunities these licenses have created. But the licenses
are an elegant use of legal rules in a social context, and should be appre-
ciated on those terms.

Notes

Professor of Law, University of Minnesota Law School. My thanks to Dan Burk and

Mark Lemley for discussing these subjects with me. Mistakes that remain are my

fault. This essay is adapted from David McGowan, Legal Implications of Open Source

Software, 2001 Univ. Ill. L. Rev. 241.

Legal Aspects of Free and Open Source Software 383

1. 17 U.S.C. §§201(a); 102; 106.

2. See the Open Source Definition version 1.9, available at http://www.

opensource.org/docs/definition_plain.html. All references in this chapter to the

Open Source Definition are to version 1.9.

3. Open Source Definition, §§1–3.

4. Open Source Definition, §§4–6; 9.

5. On injunctions, see 17 U.S.C. §502(a); Cadence Design Sys, Inc. v. Avant! Corp.,

125 F.3d 824, 827 n.4 (9th Cir. 1997) (noting that injunctions are presumptive

remedy for infringing use); cert. denied 523 U.S. 1118 (1998).

6. Professor Benkler (2002) was the first to use this metaphor, in his very thought-

ful analysis of open source practices.

7. GPL ¶0; ¶1.

8. GPL ¶2(b).

9. GPL ¶2.

10. GPL ¶6; ¶4.

11. GPL ¶5.

12. For example, ProCD, Inc. v. Zeidenberg, 86 F.3d 1447 (7th Cir. 1996) (shrinkwrap

license); I.Lan, Inc. v. NetScout Serv. Level Corp., 183 F. Supp. 2d 328 (D. MA 2002)

(click-through license).

13. See Midway Mfg Co. v. Artic Int’l, Inc., 704 F.2d 1009 (7th Cir.), cert. denied,

464 U.S. 823 (1983), and also Hogle (2001) discussing contributory infringement

argument.

14. See Free Software Foundation, Frequently Asked Questions About the GNU GPL,

available at http://www.gnu.org/licenses/gpl-faq.html.

15. See Lawrence Rosen, The Unreasonable Fear of Infection, available at

http://www.rosenlaw.com/html/GPL.PDF.

16. Cf 17 U.S.C. §103(a) (“protection for a work employing preexisting material in

which copyright subsists does not extend to any part of the work in which such

material has been used unlawfully”).

17. 17 U.S.C. §103(b) (“The copyright in a compilation or derivative work extends

only to the material contributed by the author of such work, as distinguished from

the preexisting material employed in the work”); Stewart v. Abend, 495 U.S. 207,

223 (1990) (“The aspects of a derivative work added by the derivative author are

that author’s property, but the element drawn from pre-existing work remains on

grant from the owner of the pre-existing work”). The GPL does not vest ownership

384 David McGowan

of the derivative work in the licensor, so a court presumably would consider the

author of the new code to hold its rights.

18. B could release her own code, standing alone, on any terms she chose, as long

as standing alone that code did not infringe A’s right to make works based on A’s

program.

19. LGPL, preamble.

20. LGPL ¶0 (“work based on a library”); ¶5 (“work that uses a library”); ¶2 (restric-

tions on distribution).

21. Id. ¶¶5–6.

22. Cf. Restatement of Property §512, comment (a) (“In a broad sense, the word

‘license’ is used to describe any permitted unusual freedom of action”).

23. For example, Restatement of Property §342.

24. See Cal. Civ. Code §1714(a) (creating general duty of care); Louis v. Louis, 636

N.W. 2d 314 (Minn. 2001) (landowner owes duty of care to all persons invited onto

land).

25. GPL §§11–12.

26. For example, Uniform Commercial Code §2–719; Uniform Computer

Information Transactions Act §406 (“disclaimer or modification of warranty”); M.A.

Mortenson, Inc. v. Timberline Software Co., 140 Wash. 2d 568 (2000); I.Lan, Inc. v.

NetScout Service Level Corp., 183 F. Supp. 2d 328 (D. MA 2002).

27. UCC §2–204(1); Uniform Computer Information Transactions Act §112(a)(2)

(assent may be shown by conduct); §202(a) (contract may be formed in any manner

sufficient to show agreement).

28. For example, Forrest v. Verizon Comms, Inc., 805 A.2d 1007 (D.C. App. 2002)

(click-through agreement; enforcing forum selection clause); I. Lan, Inc. v. NetScout

Service Level Corp., 183 F. Supp. 2d 328 (D. MA 2002) (click-through agreement;

enforcing damages limitation); Moore v. Microsoft, 741 N.Y.S. 2d 91 (2002) (click-

through agreement enforceable; warranty disclaimer valid); M.A. Mortenson, Inc. v.

Timberline Software Co., 140 Wash. 2d 568 (2000) (shrinkwraps); Rinaldi v. Iomega

Corp., 41 UCC Rep Serv 2d 1143 (Del. 1999) (enforcing shrinkwrap disclaimer of

warranty); Brower v. Gateway 200, Inc., 676 N.Y.S. 2d 569 (1998) (shrinkwrap;

enforcing arbitration clause but not choice of arbitrators); Hill v. Gateway 2000, Inc.,

105 F.3d 1147 (7th Cir.) (shrinkwrap), cert. denied 522 U.S. 808 (1997); Micro Star

v. FormGen, Inc., 942 F. Supp. 1312 (C.D. Cal. 1996), affirmed in part, reversed in

part on other grounds 154 F.3d 1107 (9th Cir. 1998); ProCD, Inc. v. Zeidenberg, 86

F.3d 1447 (7th Cir. 1996) (shrinkwrap license). The leading case criticizing the

shrinkwrap method is Step-Saver Data Systems, Inc. v. Wyse Technology, 939 F.2d

91 (3rd Cir. 1991). For a critique of Step-Saver, see McGowan (2002).

Legal Aspects of Free and Open Source Software 385

29. Karl N. Llewellyn, The Common Law Tradition: Deciding Appeals 370 (1960).

30. Restatement (Second) Contracts, §211(3).

31. Restatement (Second) Contracts, §2(c).

32. Persons who redistribute the author’s code are bound by the notice provisions,

and their failure to place an adequate copyright notice on each copy of the code

technically would constitute a breach of their GPL obligations, thus terminating

their GPL rights (GPL ¶4). Depending on the circumstance, persons who received

code from such breaching parties still might have enough notice to satisfy the for-

mation requirements of contract law.

33. Specht v. Netscape Communications Corp., 306 F.3d 17 (2d Cir. 2002).

34. Robert Merges, “The End of Friction? Property Rights and Contract in the Newton-

ian World of On-Line Commerce”, 12 Berkeley Tech. L.J. 115, 128–129 (1997) (“what is

most significant about the [GPL] is that it purports to restrict subsequent transfer-

ees who receive software from a licensee, presumably even if the licensee fails to

attach a copy of the agreement. As this new transferee is not in privity with the

original copyleft licensor, the stipulation seems unenforceable”).

35. Figuring out which state that is would be a significant problem where code is

floating around on the Net. I leave that issue for another time.

36. Korman v. HBC Florida, Inc., 182 F.3d 1291 (11th Cir. 1999); Walthal v. Rusk,

172 F.3d 481 (7th Cir. 1999).

37. Rano v. Sipa Express, Inc., 987 F.2d 580 (9th Cir. 1993).

38. 17 U.S.C. §203(a)(3).

39. The Free Software Foundation’s GPL FAQ disagrees with the conclusion I reach

here. The FAQ asks rhetorically “can a developer of a program who distributed it

under the GPL later license it to another party for exclusive use?” and answers “No,

because the public already has the right to use the program under the GPL, and this

right cannot be withdrawn.” http://www.gnu.org/licenses/gpl-faq.html. I am not

aware of the basis for this statement.

40. Stewart v. Abend, 495 U.S. 207, 223 (1990); 17 U.S.C.

§103(b).

41. See Declaration of Eben Moglen In Support of Defendant’s Motion for Pre-

liminary Injunction on Its Counterclaims, ¶23, Progress Software Corp. v. MySQL

AB, No. 01-CV 11031 (D. MA 2002), available at http://www.gnu.org/press/

mysql-affidavit.html.

42. Microsystems Software v. Scandinavia Online, A.B., 226 F.3d 35 (1st Cir. 2000).

43. Copy on file with author.

386 David McGowan

44. The restraining order eventually became a stipulated permanent injunction.

Microsystems Software v. Scandinavia Online, A.B., 98 F. Supp. 2d 74 (D. Ma. 2000).

45. See Lawrence Lessig, “Battling Censorware,” Industry Standard, April 3, 2000

(quoting Professor Moglen as saying that “GPL is software that cannot be revoked”).

46. I say “might” here because this is a case in which a court that construed the

GPL as simply a permission to use might find that users had no rights to enforce

against the author, while a court that construed the GPL as a bargain might reach

the opposite conclusion.

47. Professor Benkler suggests that open source production relies on copyright only

to defend itself from copyright, and that “a complete absence of property in the

software domain would be at least as congenial to free software development as the

condition where property exists, but copyright permits free software projects to use

licensing to defend themselves from defection.” Benkler, supra note 11, at 446.

Perhaps open source production would be better off if Congress revoked copyright

protection for software; we would have to see. I do not think that is likely to happen,

however, so I see no prospect of open source development freeing itself from

copyright.

48. 17 U.S.C. §101.

49. Litchfield v. Spielberg, 736 F.2d 1352, 1357 (9th Cir. 1984), cert. denied 470 U.S.

1052 (1985); see also H. R. Rep. No. 94–1476 (94th Cong., 2d Sess. (1976)) (“to con-

stitute a violation of section 106(2), the infringing work must incorporate a portion

of the copyrighted work in some form”).

50. 736 F.2d at 1357.

51. Lewis Galoob Toys, Inc., v. Nintendo of Am., Inc., 964 F.2d 965, 968 (9th Cir.

1992) (derivative work need not be fixed to infringe author’s rights), cert. denied,

507 U.S. 985 (1993); see also H. R. Rep. No. 94–1476 (94th Cong., 2d Sess. (1976))

(“reproduction requires fixation in copies or phonorecords, whereas the preparation

of a derivative work, such as a ballet, pantomime, or improvised performance, may

be an infringement even though nothing is ever fixed in tangible form”). Fixation

is not a stringent requirement, however. See MAI Sys Corp. v. Peak Computer, Inc.,

991 F.2d 511 (9th Cir. 1993) (RAM copies sufficiently fixed to support infringement

action); cert. dismissed, 510 U.S. 1033 (1994). The DMCA partially reversed the

holding in this case. 17 U.S.C. §117.

52. 17 U.S.C. §103(a); Dun and Bradstreet Software Servs., Inc. v. Grace Consulting,

Inc., 307 F.3d 197, 210 (3d Cir. 2002).

53. See Free Software Foundation, Frequently Asked Questions About the GNU GPL,

available at http://www.gnu.org/licenses/gpl-faq.html. Professor Eben Moglen, who

also serves as general counsel to the FSF, made the point succinctly in a message

posted on Slashdot in February 2003 in response to a developer’s question:

Legal Aspects of Free and Open Source Software 387

The language or programming paradigm in use doesn’t determine the rules of compliance, nor
does whether the GPL’d code has been modified. The situation is no different than the one
where your code depends on static or dynamic linking of a GPL’d library, say GNU readline.
Your code, in order to operate, must be combined with the GPL’d code, forming a new com-
bined work, which under GPL section 2(b) must be distributed under the terms of the GPL and
only the GPL. If the author of the other code had chosen to release his JAR under the Lesser
GPL, your contribution to the combined work could be released under any license of your choos-
ing, but by releasing under GPL he or she chose to invoke the principle of “share and share
alike.”

Available at http://interviews.slashdot.org/interviews/03/02/20/1544245.shtml?tid=

117andtid=123. The Free Software Foundation has said that when a program

employs communication mechanisms normally used to communicate between

separate programs, then the modules of code connected are likely to be separate

programs under the GPL. It qualifies this conclusion, however, by saying that

a different conclusion might be warranted on the facts of particular cases.

http://www.gnu.org/licenses/gpl-faq.html.

54. Progress Software Corp. v. MySQL AB, 195 F. Supp. 2d 328, 329 (D. MA 2002).

The court did say in dicta that the GPL licensor “seems to have the better argument

here,” but concluded that “the matter is one of fair dispute.” Id.

55. John Locke, The Second Treatise of Government 288 (Peter Laslett, ed. 1988). For

discussions of this theory in the context of intellectual property, see Wendy J.

Gordon, “A Property Right in Self-Expression: Equality and Individualism in the

Natural Law of Intellectual Property,” 102 Yale L. J. 1533 (1993); Jeremy Waldron,

“From Authors to Copiers: Individual Rights and Social Values in Intellectual Prop-

erty,” 68 Chi.-Kent L. Rev. 841, 849–50 (1993); Justin Hughes, “The Philosophy of

Intellectual Property,” 77 Geo. L.J. 287, 288 (1988). Because consumption of infor-

mation is nonrivalrous, a developer’s use of information in writing the commons

would not deplete the store of information, thus satisfying Locke’s proviso.

56. 123 S.Ct. 769, 780 (2003).

57. Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 429 (1984) (“the limited

grant is a means by which an important public purpose may be achieved. It is

intended to motivate the creative activity of authors and inventors by the provision

of a special reward, and to allow the public access to the products of their genius

after the limited period of exclusive control has expired”); Fox Film Corp. v. Doyal,

286 U.S. 123, 127 (1932) (government interests in copyright grant “lie in the general

benefits derived by the public from the labors of authors.”); Yochai Benkler, “Siren

Songs and Amish Children: Information, Autonomy and Law,” 76 N.Y.U. L. Rev. 23,

59 (2001) (“the basic ideological commitment of American intellectual property is

actually heavily utilitarian, not Lockean or Hegelian”).

58. Micro Star v. FormGen, Inc., 942 F. Supp. 1312 (S.D. Cal. 1996), affirmed in part,

reversed in part on other grounds 154 F.3d 1107 (9th Cir. 1998). The description of

the 29 game levels is at 942 F Supp. at 1314. The build editor referred users to a file

388 David McGowan

containing a license that granted back to FormGen all rights in games created by

the players. Id. at 1315. Micro Star argued the license was not binding because

players were not given adequate notice of its terms before writing their levels. It

used this premise to argue that FormGen had waived the right to enforce any rights

it might have had in the player levels. The district court avoided this question by

finding that Micro Star knew of the restrictions in the license agreement, and that

this knowledge was enough to defeat its waiver argument. Id. at 1318.

59. 154 F.3d at 1109–1110.

60. Lewis Galoob Toys, Inc., v. Nintendo of Am., Inc., 964 F.2d 965, 967 (9th Cir.

1992), cert. denied, 507 U.S. 985 (1993). The court distinguished between protec-

tion as a derivative work, which required fixation, and infringement of the

derivative right, which did not.

61. 154 F.3d at 1111–12 (emphasis added).

62. Id. (quoting United States v. Taxe, 540 F.2d 961, 965 n.2 (9th Cir. 1976).

63. Id. at n.5.

64. See Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 442 (1984).

65. Galoob, 964 F.2d at 967.

66. 307 F.3d 197 (3d Cir. 2002), cert. denied, 538 U.S. 1032 (2003).

67. The case involved a successor to Dun and Bradstreet Software Service, called

Geac, and a consulting firm called Grace. At one point, citing Micro Star, the court

said “[u]nless authorized by Geac, its right to create derivative works has been

usurped by Grace, whose product instructs the computer to incorporate Geac copy-

righted material with its W-2 program.” Id. at 210. The court later said “Grace’s

W-2 program using Copy and Call commands copies Geac’s computer copyrighted

code. Thus, it is a derivative work; the inclusion of the Copy and Call commands

makes Grace’s W-2 programs infringing, derivative works of Geac’s copyrighted soft-

ware.” Id. at 212. The court later rejected Grace’s arguments (i) that its “Copy

command does not modify the code”; (ii) that “industry practice uses the commands

‘to interoperate two systems;’” and (iii) that “the Copy command does not insert

text from one program into another; their program remains separate in memory.”

Id. at 213. The court said “Grace admitted that the installation, testing, compiling

and link editing of its W-2 programs required copying Geac’s software and link

editing the Geac code. Geac therefore argues that these trial admissions compel the

conclusion that, ‘as a matter of Law,’ Grace’s W-2 programs are infringing because

they contain copies of Geac’s copyright code and are derivative works of Millen-

nium. We agree.” Id. These statements are the strongest support of which I am aware

for the FSF’s position on derivative works.

68. See 17 U.S.C. §101; Ty, Inc. v. Publications Int’l, Ltd., 292 F.3d 512, 520 (7th

Cir. 2002) (“A derivative work thus must either be in one of the forms named or be

Legal Aspects of Free and Open Source Software 389

‘recast, transformed, or adapted’”); Castle Rock Ent., Inc., v. Carol Pub. Group, Inc.,

150 F.3d 132, 143 (2d Cir. 1998) (“derivative works that are subject to the author’s

copyright transform an original work into a new mode of presentation”).

69. Lawrence Rosen, “The Unreasonable Fear of Infection,” available at http://

www.rosenlaw.com/html/GPL.PDF.

70. GPL ¶2(b).

71. See Lewis Galoob Toys, Inc., v. Nintendo of Am., Inc., 964 F.2d 965, 970 (9th

Cir. 1992), cert. denied, 507 U.S. 985 (1993) (discussing possible fair use defense

by users of utility that modified output from game console; rejecting claim that

defendant could be liable for contributory infringement even if consumers did

not infringe); 3 Melville B. Nimmer and David Nimmer, Nimmer on Copyright,

§12.04(3)(a)(2003).

72. Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 442 (1984). It may seem

odd that authors of other GPL’d programs could frustrate the claims of an author

who objected to interaction, but the contributory infringement standard compels

this result. Sony provides an example of this point. In discussing why the video cas-

sette recorders at issue in that case had substantial noninfringing uses, the court

pointed out that many rightsholders, such as the producers of public television pro-

grams (Mr. Rogers) or the National Football League, were happy to have their works

recorded. 464 U.S. at 445–46. As the Court put it, “in an action for contributory

infringement against the seller of copying equipment, the copyright holder may not

prevail unless the relief that he seeks affects only his programs, or unless he speaks

for virtually all copyright holders with an interest in the outcome.” Id. at 446.

73. Cf. Lee v. A.R.T. Co., 125 F.3d 580 (7th Cir. 1997) (Easterbrook, J.) (“Because the

artist could capture the value of her art’s contribution to the finished product as

part of the price for the original transaction, the economic rationale for protecting

an adaptation as ‘derivative’ is absent.”).

74. For example, Sony Computer Entertainment, Inc. v. Connextix Corp., 203 F.3d

596 (9th Cir.), cert. denied 531 U.S. 871 (2000); Sega Enters.s, Ltd. v. Accolade, Inc.,

977 F.2d 1510 (9th Cir. 1992).

75. Sega, 977 F.2d at 1523.

76. See Joseph Farrell and Michael L. Katz, “The Effects of Antitrust and Intellectual

Property Law on Compatibility and Innovation,” 43 Antitrust Bull. 609 (1998); David

McGowan, Innovation, Uncertainty, and Stability in Antitrust Law, 16 Berkeley Tech.

L. J. 729, 807–08 (2001).

77. “Some Questions Every Business Should Ask About the GNU General Public

License (GPL),” question 3 (“How does your use of GPL software affect your intel-

lectual property rights?”). As of this writing, Microsoft seems to have taken down

the FAQ. A copy is on file with the author.

390 David McGowan

78. 17 U.S.C. §504.

79. See Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 442 (1984).

80. I am not aware of a case that deals with this question. Section 103(a) of the

Copyright Act provides some support for the position taken in the text, however. It

states that protection for works “employing preexisting material in which copyright

subsists does not extend to any part of the work in which such material has been

used unlawfully.” 17 U.S.C. §103(a). If the derivative work at issue is the combina-

tion of a firm’s program and GPL’d code, then Section 103(a) would deny the firm

rights in that combination. In the hypothetical case at issue here, the original program

would not itself employ preexisting GPL’d material, so Section 103 would not deny

it copyright protection. (My thanks to Mark Lemley for this suggestion.)

81. As far as I know, however, there is no evidence to support the FAQ’s ungener-

ous implication that open source developers will knowingly distribute infringing

code, counting on the GPL to protect them. See “Some Questions Every Business

Should Ask About the GNU General Public License (GPL)” §11 (“You should also

ask yourself if GPL developers may conclude that this disclaimer makes it okay to

distribute code under the GPL when they know they don’t have the rights required

to do so”).

82. See Uniform Computer Information Transactions Act §401(d) (allowing dis-

claimer of warranty of noninfringement).

Legal Aspects of Free and Open Source Software 391

20 Nonprofit Foundations and Their Role in

Community-Firm Software Collaboration

Siobhán O’Mahony

Contributors to community-managed projects have created nonprofit
foundations, despite the fact that such formal structures are an anathema
to the hacker ethos of technical autonomy and meritocratic decision
making. The technical organizations that emerged since the federal gov-
ernment privatized the Internet may have partially influenced the design
of these foundations, but some features are the unique product of man-
aging community software in a commodity world. One thing that stands
out from either the early Internet working groups or the typical corporate
standard-setting bodies of the past is the role of nonprofit software foun-
dations in enabling collaboration between a community of individuals and
corporate actors.

Many people may be surprised by the emergence of open source software
foundations, because incorporation requires a degree of formality that may
seem inconsistent with the portrayal of open source contributors as guided
only by their own desires (e.g., Raymond 2001). As many who contribute to
such projects know, most open source projects manage their efforts through
normative control on discussion mailing lists and instant message chan-
nels. Minimal constraints define programming formats and protocols, but
not the technical direction of the project. Despite collectively determined
code format and check-in and -out procedures, the technical direction of
most community projects is typically the product of negotiation among a
small group of core developers. How these forms of control shape the
architecture and evolution of software is still not well understood. What we
do know is that the combination of peer-based normative control and
collectively determined procedural standards have been effective enough to
permit commercial-grade software to be developed without the efficiency
benefits typically equated with bureaucratic controls.

Many programmers who contribute to community-managed projects
identify with the hacker community. As readers of this book do not need
to be told, the hacker community is not one that embraces centralized
modes of governance. The hacker ethos, as articulated by those who know
it best (Levy 1994; Raymond 2001; Pavlicek 2000; Himanen 2001), values
the intrinsic satisfaction from solving technical challenges, as well as truth,
independence, and individual autonomy. “A happy programmer is one
who is neither under-utilized nor weighed down with ill-formulated goals
and stressful process friction” (Raymond 2001, 74). This is particularly true
for projects that rely on volunteer contributors, for volunteers are more
likely to be motivated by intrinsic reasons and thus less likely to welcome
formal organizing mechanisms (Lakhani and Wolf 2003; Chap 1, this
volume; Butler et al. 2002). Indeed, these studies show that many volun-
teer contributors to software projects do so in order to learn, hone their
skills, solve a technical challenge, “make their mark,” or improve their
careers (Lakhani and Wolf 2003; Chap 1, this volume; Lerner and Tirole
2002; Hann et al. 2002).

The literature on the hacker ethos is not inconsistent with research on
the motivations, preferences, and occupational identities shared by engi-
neers and other technical workers. Organizations have long struggled with
how to manage people who are more likely to be motivated by the work
itself, less likely to want to leave their work for management positions, and
less likely to respect authority that is not rooted in technical competence
(Ritti 1971, 1998; Whalley 1986; Whalley and Barley 1997). The concept
of a dual career ladder was essentially an attempt to integrate the ethos of
the engineer within an organizational framework (Allen and Katz 1986).
While there is variance in the motivations of contributors to free and open
source software, underlying this divergence is a shared belief in the value
of challenging work, technical autonomy, self-management, and freedom
from a positional basis of power. Thus, even programmers that do not
explicitly identify with the hacker community or the ideals of the open
source and free software movements may hold beliefs about the forms of
organization they prefer. This is important, because as the open source and
free software community becomes more diverse in attitude and affiliation,
fewer elements of the hacker ethos may be as widely shared. The occupa-
tional identity that is common to programmers who prefer the commu-
nity development model may provide a source of organizational resiliency
that extends beyond individual motivations or political affiliations (Van
Mannen and Barley 1984).

394 Siobhán O’Mahony

The Organizational and Legal Dilemma

Given these preferences, why would community-managed projects create
nonprofit foundations? What role, if any, do these foundations have in
fostering collaboration between communities and firms? The commoditi-
zation of open source and free software created new opportunities for
many projects, but also created new dilemmas. Managing community soft-
ware in a commodity world brought new challenges such as how to treat
corporate contributions of code, how to communicate to the press the
difference between a project and a company, and how to enforce a
community’s terms for software modification and distribution within a
user and developer population that was growing not only larger but also
more diverse in its attitudes toward commercial software. With growth in
market share and enhanced media and industry attention came a degree
of exposure that even the most mature projects had not heretofore expe-
rienced. Greater public exposure elicited new areas of vulnerability. With
more users of the software, there was greater probability that liability issues
could arise and, as an unincorporated entity, fewer protections to prevent
volunteers from individual liability.

This is because communities are not legal actors. Community-managed
software projects are open source or free software projects initiated and
managed by a distributed group of individuals who do not share a common
employer.1 Contributors may be associated with the free software or open
source social movements, unaffiliated or sponsored by a firm. Most impor-
tantly, contributors are not employees of the project and project relations
are independent of employment relations.2 Community mailing lists are
well-bounded: membership is clear and members share distinct norms that
guide list behaviors and programming protocols. Yet they have few legal
rights.

The lack of legal rights granted to online communities became a real
problem when several leaders within the community realized that they
might have difficulty protecting the “Linux” and “open source” terms and
concepts. After the open source term was created in early 1998, firms and
members of the press sometimes used the term “open source” in ways that
extended beyond what creators of the term had intended. Companies were
not just downloading free software for their own use, they were bundling
it with other software and selling it in combination with hardware and ser-
vices. While long-term contributors to free and open source software were
delighted to see their work proliferate, firms developing Linux and other
open source products and services sometimes created confusion as to what

Nonprofit Foundations and Software Collaboration 395

these terms represented, and as to where community work stopped and
corporate work began.

In 1999, the small group of community leaders who created the open
source term found the concept too common to earn trademark rights. The
leaders announced, “We have discovered that there is virtually no chance
that the U.S. Patent and Trademark Office would register the mark ‘open
source’; the mark is too descriptive. Ironically, we were partly a victim of
our own success in bringing the ‘open source’ concept into the main-
stream. So ‘Open Source’ is not and cannot become a trademark” (OSI
Announcement, June 16, 1999).

These leaders created a nonprofit organization, the Open Source Initia-
tive (OSI), to ensure that the open source concept would not be misrepre-
sented as the concept grew in commercial popularity.3 Without legal rights,
community-managed projects not only had trouble defending their con-
cepts and code, but also were unable to form contracts and legal agree-
ments as a single entity. One Fortune 100 executive faced with structuring
a formal relationship with the Apache Project in the late 1990s, noted this
unusual state by asking: “How do I make a deal with a Web page?” Col-
laboration between a firm and a community-managed project was a rela-
tively foreign idea and there was little precedent to help make it happen.

Organizing Options and Models

What organizational options are available for open source and free soft-
ware programmers who want to move beyond the status of “a Web page”
and at the same time avoid forming a firm? Cooperatives are one legal form
with communal norms and values. Producer cooperatives pay their
members a set price for their contributions and apportion dividends pro
rata to their members yearly. Consumer cooperatives pay earnings to
members based on the amounts that members spend, as opposed to the
amounts they sell (Hansmann 1996: 13–14). Both of these forms redis-
tribute profits to their members, which is incompatible with the goals of
community-managed software projects. What unites software communi-
ties is the goal of producing open source and free software (Williams 2002;
Pavlicek 2000; Raymond 2001) and perhaps a shared culture and occupa-
tional identity (van Mannen and Barley 1984). What does not bind the
community is the desire to earn a profit as a direct product of their col-
lective work.4

Other organizing possibilities include forming a consortium, alliance, or
task force, as technical communities critical to the development of the

396 Siobhán O’Mahony

Internet have done. Indeed, the open source and free software communi-
ties are not the first technical communities to wrestle with the problem of
creating a form that can exist independent of any one person. The U.S.
government’s privatization of the Internet led to the creation of profes-
sional working groups and technical societies that were familiar to leaders
of community-managed software projects. Internet standards work that
was once the responsibility of Defense Advanced Research Projects Agency
(DARPA) has, since 1986, been delegated to the Internet Engineering
Task Force (IETF). The IETF calls itself a “loosely self-organized group of
people [volunteers] who contribute to the engineering and evolution
of Internet technologies” (“The Tao of IETF” 2001). The IETF differs from
corporate-led standard-setting bodies in that it maintains no specific
membership or dues requirements. Any interested individual can attend a
meeting, join a working group mailing list, or contribute to a project.
Members do not represent their affiliated organizations, but act on their
own capacity.

On the other hand, the World Wide Web Consortium (W3C) is a
consortium of organizations: individuals cannot become members.5 Three
universities on different continents host the W3C.6 This design was ex-
plicitly intended to preserve pluralism and prevent the emergence of a
United States–centric World Wide Web (WWW) (Berners-Lee, Fishetti, and
Dertouzous 2000). A third organization responsible for ensuring that all
Internet domain names will be universally resolvable, the Internet Corpo-
ration for Assigned Names and Numbers (ICANN), has not been able to
successfully integrate individual and organizational representation.7

ICANN has declared that its structure is incomplete, its funds inadequate,
and is currently pursuing major reform efforts. It is an unlikely organiza-
tional model.8 Neither the W3C nor the IETF are incorporated, but both
have incorporated hosts. The Internet Society (ISOC), a nonprofit pro-
fessional membership association that allows both individuals and orga-
nizations to be members, hosts the IETF. Many of the technical working
groups under the ISOC charter have well-established processes for receiv-
ing, reviewing, and integrating comments on technical standards that stem
from early government-sponsored efforts. These processes, as well as IETF’s
focus on individuals as members, may have influenced the type of form
leaders in the open source software that community leaders wanted to
create.

The first foundation for community-managed software, the Free Software
Foundation (FSF), was created even before the IETF, ISOC, W3C, or ICANN
organizations existed. Table 20.1 shows when organizations representing

Nonprofit Foundations and Software Collaboration 397

398 Siobhán O’Mahony

Table 20.1
Institutions founded to represent technical communities

Date Organization founded Mission

1979 ICCB-DARPA Develop TCP/IP Protocal Suite

1983 Internet Architecture Board Provide oversight of archictecture of

Internet, integrate working group activities

1985 Free Software Dedicated to promoting computer users’

Foundation (FSF) right to use, study, copy, modify, and

redistribute computer programs (instiutional

host for GNU project and steward of the

GNU GPL)

1986 Internet Engineering Task Concerned with the evolution of the

Force (IETF) Internet architecture and the smooth

operation of the Internet

1991 IANA Dedicated to preserving the central

coordinating functions of the global

Internet for the public good

1992 Internet Professional Society Provides leadership in addressing issues that

(ISOC) confront the future of the Internet and is

the organization home for the groups

responsible for Internet infrastructure

standards

1994 W3C (World Wide Web Develops interoperable technologies

Consortium) (specifications, guidelines, software, and

tools) to lead the Web to its full potential

1997 Software in the Public Helps organizations develop and

Interest distribute open hardware and

software (institutional host for

Debian)

1998 Open Source Initiative Dedicated to managing the promoting the

Open Source Definition

1998 ICANN Responsible for global DNS management

1999 Apache Software Provides support for the Apache

Foundation community of open source software

projects

1999 Linux Professional To design and deliver a standardized,

Institute multinational, and respected program to

certify levels of individual expertise in

Linux

Nonprofit Foundations and Software Collaboration 399

Table 20.1
(continued)

Date Organization founded Mission

2000 Perl Foundation Dedicated to the advancement of the Perl

programming language through open

discussion, collaboration, design, and code

2000 FreeBSD Foundation Dedicated to supporting the FreeBSD

operating system

2000 Free Standards Group Dedicated to accelerating the use and

acceptance of open source

technologies through the

development, application, and

promotion of standards

2000 GNOME Foundation Provide a user-friendly suite of

applications and an easy-to-use

desktop; to create an entirely free

desktop environment for free systems

2000 KDE League Promote the use of the advanced Open

Source desktop alternative by enterprises

and individuals and to promote the

development of KDE software by third-party

developers

2000 Linux International To work with corporations and others to

promote the growth of the Linux operating

system and the Linux community

2001 Python Foundation Advancing open source technology related

to Python programming language

2001 Jabber Foundation Provides organizational and technical

assistance to projects and organizations

within the Jabber community

2002 Open Source To create and gain wide adoption for

Application Foundation software applications of uncompromising

quality using open-source methods

Key:

Internet Governance Organizations

Free Software/Open Source Organizations

Organizations in bold studied in greater detail.

technical communities were founded. However, until 2002, the FSF was
not a membership organization. FSF leadership viewed a democratic gov-
ernance structure as potentially detrimental to its mission, stating, “We
don’t invite all the people who work on GNU to vote on what our goals
should be, because a lot of people contribute to GNU programs without
sharing our ultimate ideals about why are we working on this” (FSF
founder, April 26, 2001).

The trade-off that the FSF made to ensure commitment to its political
goals was to sacrifice democratic goals.9 Thus, while its influence techni-
cally, legally, and conceptually is immeasurable, its influence as an orga-
nizational model for community-managed projects was limited. Without
members, the FSF functioned as a corporate shell for the GNU project and
as a political organization devoted to changing the social, economic, and
legal arrangements that guide software development.

Since Fortune 500 firms were first challenged with the idea of “collabo-
rating with a Web page,” Apache, Debian, Gnu, Gnome, FreeBSD, Jabber,
Perl, Python, KDE, BIND, Samba, the Linux kernel, Linux Standards Base,
Mozilla, and Chandler have designed private nonprofit foundations to
“host” their projects. The institutional hosting concept may be borrowed
from the IETF and W3C models, but these projects have adopted it in dif-
ferent ways. This chapter compares the foundations created by the Debian,
Apache, and GNOME projects and concludes by examining the role of
nonprofit foundations in community-firm software collaboration.

Research Methods

Between April 2000 and April 2001, I interviewed 70 contributors to
community-managed projects10 to find out how the commercialization of
Linux was affecting the free software community and the peer-managed
development style that had emerged over the late 1980s and 1990s. I was
curious as to how commercial attention and participation on open source
and free software projects would affect the hacker culture and loose
decision-making structure. Two-thirds of my informants were corporate-
sponsored and the rest were volunteers. Most of the sponsored contributors
had initially been volunteers and now worked in firms supporting the
development of open source software. To assess how specific projects were
affected, I focused on the structuring activities of three of them: Debian,
GNOME, and Apache. Observations at project meetings, conferences,
“hackathons,” and other events, coupled with online project documenta-
tion such as project discussions, charters, bylaws, and meeting minutes,

400 Siobhán O’Mahony

helped provide triangulation of the data. This data was coded and ana-
lyzed, with a focus on the emergence of common themes that held across
variance in perspectives.

Comparing the Emergence of Three Foundations

After the FSF was established in 1985, few foundations emerged until the
Debian project created one (Software in the Public Interest) in 1997. The
Apache httpd server group founded the first membership-based founda-
tion in 1999. During the course of this research, the GNOME project began
crafting their foundation. Each of these projects varied in their stance
toward commercial relations, but they all shared a large, mature user and
developer base and had attracted commercial attention. Comparison of
their approaches shows how different project ecologies approached the
task of building a foundation at different points in time.

Debian
Debian, the most popular noncommercial distribution of Linux, has been
operating for almost 10 years under the guidance of six different leaders.
Over 1,000 members of Debian contribute to the 7,000 packages that con-
stitute the Debian operating system.11 Debian is viewed, even by long-time
members in the community, as a serious hacker’s distribution. Thus, it is
of no surprise that although Debian was one of the earliest projects to
create a nonprofit foundation, Software in the Public Interest (SPI), it did
so with some ambivalence. Members of Debian were more resistant to
the idea of incorporation and had greater fear of losing control over the
technical direction of their project than members on the other projects.
However, some leaders were concerned enough about individual liability
to want to pursue incorporation and encouraged resisters to adapt the idea
in its most minimal form.

Of the three foundations studied, SPI is the least active: it does little more
than hold Debian’s assets. Members of Debian revised their bylaws to stip-
ulate that SPI’s role is to merely serve the project as a legal steward. Debian,
like the FSF, has struggled with how to become a membership organiza-
tion. All potential contributors must pass a very formalized five-step
process to become an official Debian member. However, membership in
Debian does not trigger membership in SPI. Project members preferred an
“opt-in” approach, as opposed to equating Debian membership with SPI
membership. Membership in SPI has thus been slow to activate, which has
led to some concern about how an appointed board can represent the

Nonprofit Foundations and Software Collaboration 401

project. As a board member commented, “SPI without a membership is just
a legal framework for Debian, but with a membership it becomes an orga-
nization that can attempt to move on issues that are key to the develop-
ment of the Net. This is also why the membership is important: SPI without
a membership (and just a board of directors) may not always reflect the
concerns of the community. With a membership, SPI becomes a represen-
tation of the community, and can involve itself in issues that decide the
future of that very community” (SPI Board Member Posting, October 26,
2001).

SPI is not structured to ensure representation of project members.
However, the Debian Constitution outlines a sophisticated process
whereby project members elect leaders for a one-year term. Member rep-
resentation thus rests within the project as opposed to the foundation.
While the other two foundations created a role for firms to provide a
voice into their organization, SPI did not.12 Debian was also the only
project of the three to have an internal project leader initiate incorpora-
tion. The other two projects all received legal assistance in drafting their
charters and thinking through governance issues from two different
Fortune 500 companies.

Apache
The primary reason for incorporation proffered by informants on all three
projects was to obtain protection from individual liability. The ability to
accept donations, hold assets, host additional projects, and represent the
project as one legal entity to the public were also concerns. Apache was
the only project to explicitly mention the welfare of its customers as an
additional reason to incorporate.13 As one founding member explained, “It
is a valuable project. Most of us will stay involved in it forever. Also our
customers need stability. Apache had to be seen as an ongoing group and
I think that making a legal entity was the way to do it” (Founding Member
#1, Apache Project, September 28, 2000).

This is evidence of the distinctness of the Apache group culture. First,
the founding eight members of this project licensed their httpd server soft-
ware under a license that allows proprietary extensions of their work (the
Apache License, a variant of the BSD License). Second, many of the early
contributors worked in enterprises that were building Web sites and using
the software for commercial purposes. The Apache group was also one of
the earliest projects to be approached by a Fortune 500 firm to collaborate
and the first project to create a membership-based foundation that inte-
grated project governance. This is most likely why informants from pro-

402 Siobhán O’Mahony

jects that incorporated later often cited the Apache Software Foundation
(ASF) as an influential model.

The code contributing population of Apache is smaller than Debian and
more centralized. Over 400 individuals contributed code to the httpd
server project between February 1995 and May 1999, but the top 15 devel-
opers contributed over 80 percent of code changes (Mockus, Fielding, and
Herbsleb 2000). Code contributions are a necessary but insufficient condi-
tion for membership. ASF membership additionally requires nomination
by a current member, a written application and a majority vote. There are
currently 109 members of the ASF, of which 34 percent are independent
or have no organizational affiliation. The ASF has maintained that only
individuals can become members, but that companies may be represented
by individuals. The ASF has not implemented any formal approaches to
ensure pluralistic representation as of yet, although it has been discussed.
Sponsored contributors are from organizations that are diverse enough that
no majority or controlling interest from a single organization has yet to
emerge.

The ASF’s governance structure is akin to a federalist model. Since its
founding in 1999, the ASF has grown to host 20 projects in addition to
the httpd server. Each project has a Project Management Committee (PMC)
with a chairman who also serves as an officer of the corporation. PMC
chairs report project status to ASF members and the board, but technical
direction of the projects remains the purview of those on the project. ASF
members meet annually to elect their board of directors. Directors do not
typically interfere with the discretion of PMC leaders, but can decide
whether to charter, consolidate, or terminate PMCs. The ASF also organizes
conferences and annual face-to-face meetings. Neither the ASF nor SPI
employ people to manage administration, largely because members on
both projects did not want to engage in the business of “managing people.”
Members on both projects worried that engaging in employment relations
might distract them from what they best enjoyed about participating in
their respective projects.

According to volunteer and industry informants, ways to formalize the
“core” Apache group had been the subject of discussion for some time prior
to incorporation, but corporate interest in collaborating was a catalyst to
begin drafting the ASF bylaws. “With [a Fortune 500 company] getting
involved and wanting to figure out what the structure was, we realized that
we needed to kind of solidify our processes a bit and put some formalism
to it” (Founding Member #2, Sponsored Contributor, Apache, September
28, 2000).

Nonprofit Foundations and Software Collaboration 403

The ASF did not create an explicit role for firms other than through spon-
sored individual contributors. However, the ASF has engaged in several
formal transactions to accept intellectual property contributions from
Fortune 500 companies, most recently brokering an intellectual property
agreement on an open source implementation of Java with Sun Microsys-
tems.14 Like SPI, the ASF holds assets in trust for the Apache project and
the other projects it hosts. This includes the Apache trademark, donated
hardware and equipment, and intellectual property donated by firms as
well as by members. The ASF asks volunteer contributors to sign an agree-
ment that ensures the software they donate rightfully belongs to them and
assigns a nonexclusive copyright license to the ASF. The ASF was more vig-
ilant in seeking copyright assignment than the other two projects.15

GNOME
More than 500 developers contribute to the GNU Object Model Environ-
ment (GNOME) project, 20 percent of whom are reportedly full-time paid
developers. GNOME is a complete, graphical user interface (GUI) desktop
application designed to run on Linux-based operating systems, BSD, and
a variety of other Unix and Unix-like operating systems.16 The GNOME
Foundation membership is larger than the other projects with over 300
members, and new members do not require a vote by the majority. Can-
didates who feel that they have made nontrivial contributions are wel-
comed to apply for membership, but the exact criteria are not well
articulated at this stage. Foundation members have the right to elect a
Board of Directors and have held three successful elections thus far.
GNOME has hired an executive director to oversee fundraising and the
development and growth of the foundation.

More corporations directly participated in the creation of the GNOME
Foundation than on the other projects. Similar to Apache, a different
Fortune 500 firm donated their legal expertise to help a steering commit-
tee draft the GNOME charter and file the necessary paperwork. While firms
that wanted to collaborate with the Apache project were primarily inter-
ested in seeing the group formalize to make transactions more viable and
secure, firms working with the GNOME project wanted to influence the
foundation to gain a greater voice in decision making.17 As one contribu-
tor working on the bylaws put it, “with [Fortune 500 firm #2] coming to
the front, all these issues of control and governance became so much more
urgent, because look at [firm #2]—it’s a very competitive, very aggressive
culture there. And the way they started their conversations with GNOME
reflected that” (Sponsored Contributor, GNOME, February 8, 2001).

404 Siobhán O’Mahony

The GNOME foundation resisted this type of direct pressure by granting
firms a role on an Advisory Board that provides a venue for firms to artic-
ulate their concerns and ideas, but does not offer technical decision-
making rights.

The GNOME project was the only project of the three that allowed their
foundation to assume control over release coordination. If there was one
role assumed by foundations that was most controversial in the eyes of
informants, it was release coordination. Release coordination includes
setting a schedule, choosing the modules that will define a release, and
marketing.18 One informant felt that granting the foundation release coor-
dination authority could effectively blur the boundaries between organi-
zational and technical decision making and threaten members’ control
over the technical domain. “The reality is that, in my opinion, the foun-
dation is going to end up running GNOME. And people don’t want to say
that because it just runs counter to the democratic values of the thing, but
[. . .] if you look at release coordination alone, it gives you so much control,
that you’re effectively running the thing. Because what you end up saying
when you do a release is deciding what is a part of it and what is not a
part of it, right?” (Sponsored Contributor, GNOME, February 8, 2001).

How this authority is enacted with the developers directly responsible
for modules within GNOME is still evolving. The GNOME Foundation has
greater project representation within its foundation, but also has central-
ized more power than the other two projects.

Evidence from informants and project documentation indicates that
GNOME faced greater pressures from commercial sources to coordinate
in ways that were atypical to the hacker ethos than did the other two
projects. These pressures were manifested in project members’ resistance
to expressed commercial preferences for a more predictable and stable
development environment. Centralized release coordination authority
enhances a firm’s ability to more reliably predict components and dead-
lines associated with a release and thus better manage its own product
development activities.

GNOME’s experience may have differed because its foundation worked
with more firms in more formalized and explicit roles than did the other
two projects or because application development by its nature demands
more commercial collaboration than software development at the operat-
ing system and Web server level. Pressure to coordinate may also be a func-
tion of commercial interest in the advancement of open source desktop
applications or a function of the later stage at which the GNOME foun-
dation was developed. (The GNOME foundation was created much later

Nonprofit Foundations and Software Collaboration 405

than either the ASF (1999) or SPI (1997), at a time when commercial enti-
ties had become more aware of open source software.) Regardless of the
weight attributed to these reasons, the GNOME project experienced more
commercial pressure when creating their foundation than either Apache
or Debian. Their resulting foundation exhibits greater centralized author-
ity over software development.

Other Foundations
Nonprofit foundations help programmers retain the normative order they
prefer while creating a legal entity that can protect their work in com-
mercial markets. In addition to these three foundations, there are now at
least a dozen foundations that support the development of free and open
source software, five of them founded in 2000 alone. All but two of the
foundations listed in Table 20.1 are 501(c)(3) nonprofit organizations.19

The precise structure of each foundation reflects challenges specific to each
project’s ecology, but there are also patterns developing that will likely
change with challenges from commercial markets. This is an evolving
model that has yet to reach settlement. One of the most well-known open
source projects, the Linux kernel project, initially resisted the need to
create a foundation:

For a long time, there has been some talk about having more structure associated

with the kernel. The arguments have not been that strong. People just expect the

structure to be there. So they want to build structure because they think it is wrong

to not do it. That seems to be the strongest argument, even though it is never said

that way. But there have been for example, commercial companies who wanted to

transfer intellectual property rights and there is nothing to transfer to, which makes

their legal people scratch their heads, right? (Project leader, Linux kernel, March 12,

2001)

The community’s and industry’s faith in the leadership of this project
and the leader’s disinterest in institution building enabled the Linux kernel
project to manage legal ambiguity for a long time without undue pressure
to incorporate. With the creation of http://kernel.org, the Linux kernel
project now has a shell foundation in place but trademark rights remain
individually held.

Foundation Efficacy
It is too early to determine how successful project foundations have been
at fulfilling their mission. Project leaders recognized that any structure that
was too formal or burdensome would conflict with the hacker ethos and
lead to potential mutiny. A successful organizational design was, in the

406 Siobhán O’Mahony

eyes of one informant, one that “members could live with”; an organiza-
tion that infringed minimally upon the hacker ethos of technical auton-
omy and self-determination: “[A]s far as I can tell, we have created an
organization that can live with the community and the community can
live with it and work together towards maintaining our software over a
long period” (Volunteer contributor, Apache Project, July 19, 2000).

Informants indicated that there were early signs that their foundations
helped facilitate communication between communities and firms and
helped to avoid, or at least diffuse, potential problems. If this were true,
these effects would be more difficult to detect.

Another test of the efficacy of a foundation is its ability to maintain
mutually beneficial relations between firms and communities. Informant
explanations of mutualism often focused on the different types of com-
petencies and resources that communities and firms could contribute to
technical problems:

I think our main contribution is that we are using Debian and we are looking at

Debian from a commercial point of view. And making improvements to make it

more attractive to companies as an alternative to the commercial systems. So we are

doing work that a nonprofit group is not necessarily interested in doing and looking

at Debian from a different point of view. So our hope is that by doing that, we are

going to be able to help Debian improve and expand its audience beyond where it

is now. (Former leader, Debian, open source firm founder, February 16, 2001)

As this informant explains, the customer-oriented commercial lens that
firms brought to development work could provide a different, but com-
plementary, focus to the more foundational concerns of hackers. Comple-
mentary as opposed to competing foci fostered symbiotic working relations
between community-managed projects and firms. To the degree that firms
and community projects share the same goals and interests (for example,
to expand their market share) despite divergent motivations, and to the
degree that each type of actor maintains different foci, informants felt that
symbiotic relations were possible. Maintaining this balance was under-
stood however to require social structures that reinforced pluralism and
the balancing of community and firm interests.

Facilitating Community-Corporate Collaboration: A New Actor in the
Supply Chain

The foundations that emerged in this study are incorporated and organized
by and for individual members. They produce benefits for the public, but
do not redistribute profits to their members. What is unique about these

Nonprofit Foundations and Software Collaboration 407

foundations, in relation to technical communities of the past, is that these
foundations also own assets that are sold by third parties in commer-
cial markets and may in fact compete with other commercial offerings.
Firms that use free and open source software have, in effect, allowed
community-managed projects that grew out of a politically motivated
social movement to become a part of their supply chain. This interdepen-
dence has fostered a new set of working relations among community
projects, their foundations, and firms. Figure 20.1 outlines the role of
nonprofit foundations in this new collaboration model. Foundations hold
the assets and property rights of technical communities that produce
software, but do not pay their developers or redistribute profits to their
members. Community members retain the ability to set their own tech-
nical direction and manage the culture, norms, and governance of their
own projects. In return for assigning their intellectual property to a foun-
dation, they are granted protection from individual liability and a means
to legally represent the project.

Firms can sell and distribute the community’s work at a profit by creat-
ing complementary software, hardware, and services that reflect their con-
ception of market needs. They can modify the work of the community as
long as they respect the terms of community licenses and contribute
improvements back to the code base where required. In return, firms offer
sponsorship and support to both individuals and foundations. Individual
volunteers that are working on components of critical interest to firms may
be hired to continue their efforts as sponsored contributors. Proprietary
code, financial resources, hardware, and equipment that firms wish to
donate to the project are entrusted to the foundation. In return, some
foundations offer firms advisory or sponsor roles: mechanisms that can
provide them with a voice on the project. On a day-to-day basis, com-
mercial support of community-managed projects is enacted through the
sponsored contributors that work on those projects. On a legal basis, the
foundations play an important mediating role. In figure 20.1, release coor-
dination is depicted with a question mark sitting between the authority
of projects and their foundation. The strength and role that foundations
play when collaborating with firms may well depend on the degree to
which the authority of the foundation touches the technical core of the
project.

In this model, the ownership and maintenance of code is decoupled
from its sale and distribution. Without some means to retain their rights,
it is unlikely that community-managed projects would have had the base
of power necessary to engage with firms and create this model (O’Mahony

408 Siobhán O’Mahony

Nonprofit Foundations and Software Collaboration 409

R
el

ea
se

M

an
ag

em
en

t?

C
o

m
m

u
n

it
y

M
a

n
a

g
e

d
 P

ro
je

c
ts

N
o

n
-P

ro
fi

t

F
o

u
n

d
a

ti
o

n
s

F
ir

m
s

M
a

rk
e

t

F
re

e
 S

o
ft

w
a

re
 F

o
u

n
d

a
ti

o
n

 -
 p

u
b

lis
h

es
 G

N
U

 G
P

L
an

d
 d

ef
in

es
 w

h
at

 is
 f

re
e

so
fw

ar
e

O
p

e
n

 S
o

u
rc

e
 I

n
it

ia
ti

v
e

 -
 c

er
ti

fi
es

 w
h

at
 is

 a
n

 o
p

en
 s

o
u

rc
e

lic
en

se

D
ev

el
o

p
 f

re
e

 a
n

d
 o

p
e

n

s
o

u
rc

e
 s

o
ft

w
a

re

M
ai

n
ta

in
 in

d
iv

id
u

al
au

to
n

o
m

y
an

d
 h

ac
ke

r
n

o
rm

s

P
ro

vi
d

e
m

ec
h

an
is

m
 f

o
r

fi
rm

s
to

 g
ai

n
 v

o
ic

e
o

n
p

ro
je

ct

B
ro

ke
r

ag
re

em
en

ts

w
it

h
 f

ir
m

s

D
o

n
at

e
re

so
u

rc
es

D
o

n
at

e
co

d
e

an
d

 a
ss

ig
n

co
p

yr
ig

h
t

to
 f

o
u

n
d

at
io

n
s

H
ir

e/
S

u
p

p
o

rt
 in

d
iv

id
u

al
co

n
tr

ib
u

to
rs

R
es

ea
rc

h
 m

ar
ke

t/

cu
st

o
m

er
 n

ee
d

s

S
u

p
p

ly
 c

o
m

p
le

m
en

ta
ry

so
ft

w
ar

e,
 h

ar
d

w
ar

e,

se
rv

ic
es

B
u

n
d

le
 a

n
d

 s
el

l
co

m
m

u
n

it
y

o
w

n
ed

so
ft

w
ar

e

H
o

ld
 a

ss
et

s
fo

r
co

m
m

u
n

it
y

m
an

ag
ed

p
ro

je
ct

s

P
ro

te
ct

 in
d

iv
id

u
al

s
fr

o
m

 li
ab

ili
ty

R
ep

re
se

n
t

p
ro

je
ct

 f
o

r
P

R
 a

n
d

 m
ar

ke
ti

n
g

p

u
rp

o
se

s

D
ev

el
o

p
 a

g
re

ed
 u

p
o

n
g

o
ve

rn
an

ce
 p

ro
ce

d
u

re
s

A
ss

ig
n

 li
m

it
ed

 r
ig

h
ts

to
 f

o
u

n
d

at
io

n
s

E
le

ct
 r

ep
re

se
n

ta
ti

ve
s

Fi
g

u
re

 2
0.

1
T

h
e

ro
le

 o
f

n
on

p
ro

fi
t

fo
u

n
d

at
io

n
s

2003). Firms, for example, could have legally used community-developed
software without necessarily collaborating with them. Community-
managed projects held two bases of power that helped firms consider them
a credible partner for collaboration: the market share and user base that
derived from a project’s technical excellence and the legal and normative
controls that encouraged users to “give back” to the project. These two
bases of power offset technical communities’ lack of economic and polit-
ical power and helped establish them as a viable commercial actor with
which firms could partner.20

Granted, this analysis provides a rather static view of the legal and orga-
nizational structures that underlie a larger and more complex network of
social relationships that flow in and out of these different forms. For
example, a volunteer contributor could become sponsored by a firm and
then be elected to a board position in a nonprofit foundation. Individuals
who were once volunteers and have since founded firms may be active in
shaping the nonprofit foundations that represent their project. Informants
often stressed that they wished to perceive each other as individual con-
tributors without regard to organizational affiliation. And yet, many infor-
mants that occupied two or more roles acknowledged that they often
experienced role conflict when their activities touched multiple interests.

An implicit but unarticulated tenet of the hacker ethos is the desire to
maintain pluralism. This belief takes two forms. First, there is pluralism in
voice and process. Raymond has argued that with “more eyes, more bugs
are shallow” (2001). An unstated condition is that diverse eyes are neces-
sary for this lay maxim to hold. The more programmers from diverse cul-
tures and backgrounds run various applications in different computing
environments, the more likely it is that each user will detect problems
unique to them. This allows code to be tested and contributions designed
at a level that would require more permutations than are possible at
most software firms. Diversity matters as much as volume. The second
form of pluralism is required to make multilateral contributions possible:
pluralism in the computing infrastructure itself. Software that is created
independent of any one vendor’s terms, is portable to different types of
operating systems, and is interoperable with other applications allows plu-
ralistic contributions to continue. The principle of pluralism depends upon
shared standards and protocols, but I would argue that it also depends
upon a form of organization that prevents dominant interests from
forming.

Herein lies a source of conflict. Individuals contributing to community
projects want to recognize each other as individuals, retain their individ-

410 Siobhán O’Mahony

ual autonomy, and remain as free from their employment affiliations as
possible. On the other hand, without recognition of organizational affili-
ation, preserving pluralism will be more difficult. Project responses to
potential conflict of interest problems have varied, but one feature that
works in their favor is public disclosure. The organizational affiliation of
project leaders is typically publicly available. When the relationship of
one’s activities to one’s organizational affiliation becomes suspect, other
community members are likely to be vocal about their concerns. For con-
tributors who adopt project-based e-mail addresses, affiliation is less public.
Over time, this could lead to further blurring of these different roles. The
governance structure foundations provide may become one way to help
preserve pluralism.

The evolution of a symbiotic relationship between community-managed
projects and firms required adaptation from both actors, and some of these
changes are manifested in the roles that nonprofit foundations fulfill, but
not all. An understanding of how community-managed projects and firms
maintain this relationship at the level of code contribution requires much
more explication than has been discussed here. This structural examina-
tion of the community-firm collaboration model distributes a very differ-
ent set of power, ownership, and rights than has been fully appreciated.
From an economic perspective, one might ask whether community-
managed projects outsourced their distribution costs, or whether firms out-
sourced their development costs. Arguments could be made to support
both lines of thought, which is in itself perhaps a test of mutualism. A
more sociological perspective might question whether community-
managed projects that are both politically and pragmatically motivated
have successfully resisted cooptation by powerful market dominants.
Legally, nonprofit foundations play a critical role in preventing this from
happening, but this role reinforces mutual relations that are normatively
maintained. Equally significant implications are likely to stem from the
intellectual and innovative contributions that can result from collabora-
tion with a new type of actor in the software industry.

Notes

The research in this chapter was supported by a grant from the Social Science

Research Council, with funds provided by the Alfred P. Sloan Foundation, as well

as by funds from Stanford University’s Center for Work, Technology, and Organi-

zation and the Stanford Technology Ventures Program. This research benefited from

the helpful comments of the editors as well as Steve Barley, Bob Sutton, Mark

Nonprofit Foundations and Software Collaboration 411

Granovetter, Jason Owen-Smith, Woody Powell, Neil Fligstein, Doug Guthrie,

Rachel Campagna, Fabrizio Ferraro, and Victor Seidel. All errors are mine. I also

thank my informants, who generously contributed their time.

1. A few community-managed projects allow organizations to participate as con-

tributors; most only allow individuals to participate as contributing members.

2. I use community-managed software project to distinguish from open source and free

software projects that can be sponsored and managed by firms, because firms can

also start and manage open source projects.

3. The definition of open source software, which is based on the Debian Free Soft-

ware Guidelines, is located at http://www.opensource.org. Without a trademark, the

OSI, in consultation with their attorneys, designed an “open source” certification

program that helps ensure that corporate software licenses that claim to be open

source do indeed meet the criteria for open source as defined by the community.

4. This does not exclude the possibility of earning a profit from modifications,

extensions of products, hardware, and services to collectively produced efforts.

5. There are more than 450 members who pay dues to the consortia and nearly 70

full-time staff around the world who contribute to W3C specifications.

6. The Massachusetts Institute of Technology (MIT) in the United States, the Euro-

pean Research Consortium for Informatics and Mathematics (ERCIM) in Europe, and

Keio University in Japan host the W3C (http://www.w3c.org).

7. ICANN was created in 1998 after a Department of Commerce white paper rec-

ommended that this federal function mission be privatized. For more information,

see http://www.icann.org/general/white-paper-05jun98.htm.

8. For more information see “President’s Report: ICANN—The Case for Reform,”

February 24, 2002, located at http://www.icann.org/general/lynn-reform-proposal-

24feb02.htm. The privatization of ICANN may have been a more challenging task

than that of the IETF, because global DNS management requires the active partici-

pation of governments and because it had less time to grow a community to support

it before Internet access became ubiquitous.

9. In 2002, the FSF developed an associate membership plan, but it offers members

limited decision-making rights.

10. I interviewed seven more contributors to community-managed projects in

2002–2003, for a total of 77.

11. The FSF supported Debian in its early years (1994–1995).

12. However, Debian does acknowledge the 143 vendors in 39 countries that sell

Debian distribution and its other corporate supporters with a Partners Program.

13. http://www.apache.org/foundation/press/pr_1999_06_30.html

412 Siobhán O’Mahony

14. “Apache Software Foundation Reaches Agreement with Sun Microsystems To

Allow Open Source Java Implementation,” March 25, 2002, located at: http//

jakarta.apache.org/site/jspa_agreement.html

15. The FSF is also vigilant in asking software contributors to assign their copyright.

For more information on a comparison of copyright assignment practices across dif-

ferent projects, see O’Mahony 2003.

16. http://foundation.gnome.org/press/pr-gnome20.html.

17. Although a Fortune 500 firm helped catalyze the creation of the ASF, I did not

find primary or secondary evidence of direct pressure from firms in the design of

their foundation.

18. Gnome Project Charter, October 23, 2000.

19. The Free Standards Group and Linux International are incorporated as a

501(c)(6) organization. This class of nonprofits is reserved for business leagues and

groups such as chambers of commerce. One distinction is that 501(c)(3) organiza-

tions provide public benefits, while 501(c)(6) organizations provide mutual benefits

to a designated group. In order to earn a 501(c)(3) exemption from taxation from

the IRS, an organization must be primarily devoted to charitable, religious, educa-

tional, scientific, literary, or public safety endeavors. The IRS has interpreted the

development of free and open source software as furthering education or scientific

goals.

20. Two other factors may have been important in enabling this collaborative model

to unfold: the presence of a monopoly in the software market and digital technol-

ogy. If cooperatives are partial, as opposed to identical suppliers of the same good,

incumbent nonmonopoly firms are more likely to cooperate with a community

form. Thus open source software’s weakness in some areas of the consumer market

coupled with the presence of a monopoly might have provided an opportunity

structure favorable to cooperation with nonmonopoly firms. A second enabling

factor is the material attributes of digital intellectual property itself. The ability to

decouple development, modification, ownership, and distribution of rights helped

grant organizing flexibility.

Nonprofit Foundations and Software Collaboration 413

21 Free Science

Christopher Kelty

What is the value of science? In speculating about the success of open
source/free software (OS/FS), users and advocates often suggest that it is
“like science.” It has characteristics of peer review, open data subject to val-
idation and replication, and a culture of academic freedom, credit, civility,
and reputation. The point of this comparison is that these characteristics
directly contribute to producing (morally or technologically) better soft-
ware, just as science is improved by them. This begs the question: what
exactly is the value of either endeavor—financial, personal, aesthetic,
moral, or all of these? How can we specify it?

This chapter investigates the value of science from the perspective of its
social constitution; in particular, the importance of law, informal norms,
and technology. It poses two related questions: “Is science like open
source/free software?” and “Can you do science without open source/free
software?”

Two Economies of Science

In studies of OS/FS, the question of motivation inevitably arises, and is
usually answered in terms of reputation. Reputation, it is asserted, is like
money, and governs how people make choices about what software they
use or to which projects they contribute. A similar issue infuses the social
and historical study of science: here the question of motivation concerns
what might be called the “remunerative structure of science”; that is, the
difference between cash payment for knowledge and ideas, and the distri-
bution of reputation, trust, or credit for knowledge and ideas. On the one
hand, many people (Merton 1973; Polanyi 1969; Mirowski 2001; Mirowski
and Sent 2002) suggest that it is the latter that keeps science on the
right track towards truth and objectivity. Much like the claim in OS/FS
that openness and freedom lead to better software, the structure of

remuneration through credit and public acknowledgment in science is said
to ensure that the truest truths, and neither the cheapest or the most
expensive ones emerge from the cauldron of scientific investigation.

On the other hand, the political economy of science is also deeply
embedded in the health and progress of nations and societies. Science (like
software) simply must be paid for somehow, and most scientists know this,
even if they like to ignore it. What’s more, if it is to be paid for—by gov-
ernments, rich people, or corporations—it is probably required to con-
tribute to their agenda somehow. In a representative democratic society,
this means that the funding of science is done on condition that it con-
tributes to “progress.” It is only through science and technology (or so
many economists have concluded) that growth, progress, and increasing
prosperity are even possible. Scarce resources must be effectively distrib-
uted or the value of the whole enterprise collapses. Markets and money
are one very effective way of achieving such allocation, and science,
perhaps, should not be an exception.

The tension between these two demands can be summed up in two dif-
ferent questions concerning “value”: (1) What is the best way to achieve
efficient allocation of scarce resources? and (2) What is the proper way to
organize a secular scientific and technological society so that it can
contribute to the improvement of question 1? Needless to say, these
questions must be kept separate to be meaningful. Where OS/FS appears,
it is often in response to the subordination of question 2 to question 1.
Free software licenses, the open collaborative ethic of OS/FS hackers, and
the advocacy of lawyers and economists are all ways of reminding people
that question 1 is not the only one on the table. This issue strikes science
and technology at its heart—especially in its European and American
forms in the universities and research labs. It is left to scientists, engineers,
and managers in these places to insist on a continual separation of these
two questions. In a practical sense, this separation means maintaining
and improving systems of remuneration based on the principles of peer
review, open access, experimental verification and the reduction of con-
flicts of interest. Without these, science is bought and sold by the highest
bidder.

Doing Science

Is science like open source/free software? Yes, but not necessarily so. There
are far too many examples in science of secrecy, meanness, Machiavellian

416 Christopher Kelty

plotting, and downright thievery for us to believe the prettied-up claim
that science is inherently characterized by openness and freedom. Curi-
ously, this claim is becoming increasingly accurate. From the sixteenth
century on, norms and forms of openness have improved and evolved
alongside the material successes of science and technology. The creation
of institutions that safeguard openness, peer review, trust, and reputation
is coincident with the rise and dominance of scientific and technical exper-
tise today. The myth of a scientific genius toiling away in an isolated lab,
discovering the truths of nature, bears little resemblance to the historically
situated and fundamentally social scene of Robert Boyle demonstrating his
air pump before the assembled Royal Society. Though it is easy to show
how political, how contextual, or how “socially constructed” science is,
this is not the point I am making (for some canonical references in this
field, see Bloor 1976; Barnes 1977; Collins 1985; Pickering 1984; Latour
1986; Haraway 1997). Rather, the point is that the creation and mainte-
nance of the institutions of science over the last 400 years has been a long,
tortured, and occasionally successful attempt to give science the character
of truth, openness, and objectivity that it promises. However, we are not
there yet, and no scientists are free from the obligation of continuing this
pursuit.

One compelling study of how science has become analogous to the
OS/FS movements is the work of Robert K. Merton, the American sociolo-
gist who first attempted to think through what he called the “normative
structure of science”—a sociological account of scientific action that
focused on the reward system and the ethos of science (Merton 1973). The
ethos of science (not unlike the famous “Hacker Ethic,” Himanen 2001) is
that set of norms and forms of life that structure the activity of scientists
across nations, disciplines, organizations, or cultures. Merton identified
four norms: universalism, communism (Merton’s word), disinterestedness,
and organized skepticism.

These norms are informal, which is to say that they are only communi-
cated to you by your becoming part of the scientific establishment—they
are not written down, and are neither legally nor technically binding
(along the same lines as “You are a hacker when another hacker calls you
a hacker”). However, despite the informal character of these norms, the
institutions of science as we know them are formally structured around
them. For example, communism requires a communication structure that
allows the communally owned property—ideas, formulae, data, or results
—to be disseminated: journals, letters, libraries, university postal systems,

Free Science 417

standards, protocols, and some more or less explicit notion of a public
domain.

Or, another example. The norm, disinterestedness, is not an issue of
egoism or altruism, but an institutional design issue. For disinterestedness
to function at all, science must be closed off and separate from other parts
of society, so that accountability is first and primarily to peers, not to man-
agers, funders, or the public—even if this norm is continually under assault
both from within and without. Similarly, organized skepticism is not
simply methodological (whether Cartesian doubt or acceptable “p” values),
but institutional as well—meaning that the norms of the institution of
science must be such that they explicitly, if not exactly legally, promote
the ability to maintain dissent even in the face of political power. Other-
wise, truth is quickly compromised.

To take a historical example, consider Robert Boyle, as told by Steven
Shapin and Simon Schaffer (1985) in Leviathan and the Air Pump. Boyle’s
genius lay not only in his formulation of laws concerning the relation of
temperature, pressure and volume (a significant achievement in itself),
according to Shapin and Schaffer, Boyle’s activities also transformed the
rules of modern experimentalism, of “witnessing” and of the means for
establishing modern facts. Boyle’s experimental air pump was seventeenth-
century “big science.” It required Boyle’s significant fortune (he was, after
all, the son of the Earl of Cork), access to master glass blowers and crafts-
men, a network of aristocratic gentlemen interested in questions of natural
philosophy, metaphysics, and physics. Perhaps most importantly, it
required the Royal Society—a place where members gathered to observe,
test, and “debug” (if you will) the claims of its members. It was a space by
no means open to everyone (not truly public—and this is part of the
famous dispute with Thomas Hobbes, which Shapin and Schaffer address
in this book), because only certain people could be assumed to share the
same language of understanding and conventions of assessment. This is a
shortcoming that OS/FS shares with Boyle’s age, especially regarding the
relative absence of women; the importance of gender in Boyle’s case is
documented in (Potter 2001); there is much speculation, but little scholar-
ship to explain it in the case of OS/FS.

To draw a parallel with OS/FS here, the Royal Society is in some ways
the analog of the CVS repository: demonstrations (software builds), regular
meetings of members (participation in mailing list discussion), and inde-
pendent testing and verification are important structural characteristics
they have in common. They both require a common language (or several),
both natural and artificial.

418 Christopher Kelty

Hackers often like to insist that the best software is obvious, simply
because “it works.” While it is true that incorrectly written software simply
will not compile, such an insistence inevitably glosses over the negotia-
tion, disputation, and rhetorical maneuvering that go into convincing
people, for instance, that there is only one true editor (emacs).

A similar claim exists that scientific truth is “obvious” and requires no
discussion (that is, it is independent of “our” criteria); however, this claim
is both sociologically and scientifically simplistic. It ignores the obvious
material fact that scientists, like programmers, organize themselves in col-
lectivities, dispute with each other, silence each other, and engage in both
grand and petty politics. Boyle is seen to have “won” his dispute with
Hobbes, because Hobbes science was “wrong.” This is convenient short-
hand for a necessary collective process of evaluation without which no one
would be right. It is only after the fact (literally, after the experiment
becomes “a fact”) that Boyle’s laws come to belong to Boyle: what Merton
called “intellectual property.” A science without this process would reduce
simply to authority and power. He with the most money pronounces the
Law of the Gases. The absurdity of this possibility is not that the law of
the gases is independent of human affairs (it is) but that human affairs go
on deliberately misunderstanding them, until the pressure, so to speak, is
too great.

Merton and others who study science and technology like to point out
just how widespread and extensive this system of disputation, credit, and
reward is: it includes eponomy (the naming of constants, laws, and
planets), paternity (X, father of Y), honors, festschrifts, and other forms of
social recognition, prizes like the Fields medal or the Nobel, induction into
royal societies, and ultimately being written into the history books. These
mechanisms are functional only in hindsight; it is perhaps possible to say
that science would still proceed without all these supports, but it would
have neither collective existence in nor discernible effect on the historical
consciousness and vocational identity of practicing scientists. That is to
say, the question of motivation is meaningless when considered in isola-
tion. It is only when considered as a question of institutional evolution
and collective interaction that motivation seems to have a role to play. In
the end, it is equally meaningless to imagine that people have a “natural”
desire to pursue science as it is to suggest that we are somehow pro-
grammed to desire money. Curiosity and greed may be inevitabilities (this
hangs on your view of human nature), but the particular forms they take
are not self-determining.

Free Science 419

Funding Science

Of course, such informal norms are all well and good, but science costs
money. On this point, there is no dispute. In Boyle’s day, air pumps were
like linear accelerators: expensive and temperamental. Even books could
be quite dear, costing as much as the air pump itself (Johns 1998). For
Boyle, money was no object; he had it, and other people around him did
too. If they didn’t, then a rich friend, a nobleman, a patron could be found.
The patronage structures of science permeated its institutional, and
perhaps even its cognitive, characteristics (Biagioli 1993). By contrast,
twentieth-century science looks very different—first, because of massive
philanthropy (Carnegie, Rockefeller, and others); second, because of
massive military and government investment (Mirowski 2002; Mirowski
and Sent 2002); and third, because of massive “soft money,” research and
development and contract investment (this most recent and rapid form of
the commercialization of science differs from field to field, but can be said,
in general, to have begun around 1980). The machines and spaces of
science were never cheap, and have gotten only less so. The problem that
this raises is essentially one of the dispensation of credit and return on
investment.

Sociologists of science have attempted to finesse this difficulty in many
of the same ways as observers of OS/FS: through notions of “reputation.”
Gift economies, in particular, were the study of a short article by Warren
Hagstrom. He attempted to explain how the contributions to scientific
research—such as giving a paper or crediting others—made the circulation
of value an issue of reciprocity that approximated the gift-exchange
systems explored by Marcel Mauss and Bronislaw Malinowski (Hagstrom
1982). Bruno Latour and Steve Woolgar also explore the metaphors of non-
monetary exchange in science, in the course of their work on the con-
struction of facts in laboratories. They suggested that there is a “cycle of
credit” that includes both real money from granting agencies, govern-
ments, and firms and the recognition (in the form of published articles)
that leads full circle to the garnering of grant money, and so on ad infini-
tum. In this cycle, both real money and the currency of reputation or credit
work together to allow the scientist to continue to do research (Latour and
Woolgar 1979). Here, the scientist wears two masks: one as the expert
witness of nature, the other as the fund-seeking politician who promises
what needs to be promised. Most scientists see the latter as a necessary evil
in order to continue the former (see Latour 1986 for an alternate account).
There is a similarity here with OS/FS programmers, most of whom, it is

420 Christopher Kelty

said, keep their day jobs, but spend their evenings and weekends working
on OS/FS projects (Raymond 2001).

In these studies to date, the focus has been on the remuneration of the
scientists, not the return on investment for the funders. In the cases of
early modern patronage systems, the return to the patron was not strictly
financial (though it could be), but was often also laden with credit in a
more circumscribed and political sense (for example, the status of a monar-
chy or of a nation’s science; see Biagioli 1993). In a similar sense, philan-
thropists build for themselves a reputation and a place in history.
Government and military funding expects returns in specific areas: prin-
cipally war, but also health, eradication of disease, and economic growth.
Soft money, venture capital, and research and development, on the other
hand, are primarily interested in a strictly calculated return on investment
(though here too, it would be disingenuous to suggest that this were the
only reward—venture capitalists and corporations seek also to be associ-
ated with important advances in science or technology and often gain
more in intangible benefits than real money). The problem of funding
science is never so clean as to simply be an allocation of scarce resources.
It includes also the allocation of intangible and often indescribable social
goods. Strangely, Robert Merton called these goods “intellectual property”
(Garfield 1979).

It is important to distinguish, however, the metaphorical from the literal
use of intellectual property: in the case of the scientist, reputation is
inalienable. No one can usurp a reputation earned; it cannot be sold; it
cannot be given away. It may perhaps be shared by association; it may also
be unjustly acquired—but it is not an alienable possession. Intellectual
property granted by a national government, on the other hand, exists
precisely to generate wealth from its alienability: inventors, artists,
writers, composers, and yes, scientists, can sell the products of their intel-
lectual labor and transfer the rights to commercialize it, in part or in
whole, by signing a contract. The reputation of the creator is assumed to
be separate from the legal right to profit from that creativity. This legal
right—intellectual property as a limited monopoly on an invention or
writing—is often confused with the protection of reputation as an inalien-
able right to one’s name; this is not guaranteed by intellectual property
law (on this confusion throughout history, see Johns 1998).

This confusion of the metaphorical and the literal uses of intellectual
property goes both ways. Today it is virtually impossible to step foot in a
lab without signing a licensing agreement for something, be it a machine,
a tool, a process, a reagent, a genetic sequence, or a mouse. Many of the

Free Science 421

things biologists or engineers once traded with each other (cell lines,
testing data, images, charts, and graphs) are now equally expected to gen-
erate revenue as well as results. The race to publish is now also a race to
patent. It might even be fair to say that many scientists now associate
success in science with return on investment, or see the “free” exchange
of ideas as more suspicious than a quid pro quo based on monetary
exchange (see Campbell et al. 2002). This metaphorical confusion neces-
sitates a closer look at these practices.

Valuing Science

The metaphors of currency and property in science meet in a peculiar
place: the Science Citation Index. Citation indices give one a very promi-
nent, if not always precise, indicator of value. It is a funny kind of value,
though. Even though citation is quantifiable, not all reputation depends
on citations (though some tenure committees and granting agencies beg
to differ on this point). Qualitative evaluation of citing practices is an
essential part of their usefulness. Even though work that isn’t included in
such databases is at a rather serious disadvantage, reputationally speaking,
science citation indices do not simply measure something objective (called
reputation). Rather, they give people a tool for comparative measure of
success in achieving recognition.

Robert Merton clearly understood the power of citation indexing—both
as currency and as a kind of registration of intellectual property for the
purposes of establishing priority. In the preface to Eugene Garfield’s 1979
book Citation Indexing, Merton says, “[Citations in their moral aspect] are
designed to repay intellectual debts in the only form in which this can be
done: through open acknowledgment of them” (Garfield 1979, viii). He
thus makes citations the currency of repayment. But he goes even further,
explaining scientific intellectual property in a manner that directly paral-
lels the claims made for OS/FS’s success as a reputation economy:

We can begin with one aspect of the latent social and cultural structure of science

presupposed by the historically evolving systematic use of references and citations

in the scientific paper and book. That aspect is the seemingly paradoxical character

of property in the scientific enterprise: the circumstance that the more widely sci-

entists make their intellectual property available to others, the more securely it

becomes identified as their property. For science is public, not private knowledge.

Only by publishing their work can scientists make their contribution (as the telling

word has it) and only when it thus becomes part of the public domain of science

can they truly lay claim to it as theirs. For the claim resides only in the recognition

of the source of the contribution by peers. (Garfield 1979, vii–viii)

422 Christopher Kelty

This claim is remarkable, but not dissimilar to that remarkable claim of
OS/FS (particularly open source) advocates—that openness results in the
creation of better software. Merton here claims as much for science. The
incentive to produce science depends on the public recognition of prior-
ity. The systems involved in making this property stick to its owner are
reliable publishing, evaluation, transmission, dissemination, and ulti-
mately, the archiving of scientific papers, equations, technologies, and
data. As stated previously, this priority is inalienable: when it enters this
system of registration, it is there for good, dislodged only in the case of
undiscovered priority or hidden fraud. It is not alienable intellectual prop-
erty, but constant; irretrievably and forever after granted. Only long after
the fact can diligent historians dislodge it.

Who grants this property? The key is in Merton’s paradox: “the more
widely scientists make their intellectual property available to others, the
more securely it becomes identified as their property” (Garfield 1979, vii).
That is, no one (or everyone) grants it. The wider the network of people
who know that Boyle is responsible for demonstrating that under a con-
stant temperature gas will compress as pressure is increased, the more
impossible it becomes to usurp. Only by having a public science in this
sense is that kind of lasting property possible. A privatized science, on the
other hand, must eternally defend its property with the threat of force, or
worse, of litigation. While a public science tends toward ever greater cir-
culation of information in order to assure compensation in reputation, a
private science must develop ever more elaborate rules and technologies
for defining information and circumscribing its use. Not only is a private
science inefficient; it also sacrifices the one thing that a public science
promises: progress.

Nonetheless, a public science is only possible through publication. The
publication and circulation of results is a sine qua non that up until the
advent of the Internet was possible only through academic publishers, uni-
versity presses, and informal networks of colleagues and peers. Reputation
was effectively registered through the small size and manifest fragility of
the publication network. It has been successful enough and widespread
enough that most people now associate the quality of a result with the
publication it appears in. We have a well-functioning system, however
imperfect, that allows a widely distributed network of scientists to coeval-
uate the work of their peers.

From an institutional standpoint, this is a very good thing. As I said
earlier, science has not always been open or free, but it has become more
and more so over the last 400 years. The functions of openness that have

Free Science 423

developed in science exist only because publishers, universities, and acad-
emic presses—along with scientists—believe in them and continue to pro-
pagate them.

To some extent, this system of reputational remuneration has lived in
strained but peaceful coexistence with the monetary structure of funding.
It is only of late, with the expansion of intellectual property law and the
decreasing vigilance of anti–trust policing, that the legal and institutional
framework of the U.S. economic system has actually become hostile to
science.

Consider the situation scientists face today. Most scientists are forced to
explicitly consider the trade-off between the ownership of data, informa-
tion, or results and the legal availability of them. In designing an experi-
ment, it is no longer simply a process of finding and using the relevant
data, but of either licensing or purchasing it, and of hiring a lawyer to
make sure its uses are properly circumscribed. In economic terms, the trans-
action costs of experiment have skyrocketed, specifically as a result of the
increased scope of intellectual property and more generally due to the ever
increasing dangers of attendant litigation. In scientific terms, it means that
lawyers, consultants, and public relations agents are increasingly stationed
in the lab itself, and they increasingly contribute to the very design of
experiments.

The result is a transformation of science, in which the activity of using
an idea and giving credit is confused with the activity of buying a tool and
using it. Science becomes no longer public knowledge, but publically
visible, privately owned knowledge.

The skeptic might ask: why not let intellectual property law govern all
aspects of knowledge? What exactly is the difference between using an idea
and buying one? If the copyright system is an effective way of governing
who owns what, why can’t it also be an effective way of giving credit where
credit is due? Such a proposition is possible in the context of U.S. law, and
less so in European intellectual property law, which makes an attempt
(however feeble) to differentiate the two activities. In German law, for
instance, the “moral right of the author” is presumed to be inalienable,
and therefore a separate right from that of commercial exploitation. While
U.S. law doesn’t make this distinction, most U.S. citizens do. Even the firm
believer in copyright law wants to protect his reputation; no one, it seems,
wants to give up (metaphorical) ownership of their ideas. Unfortunately,
these are issues of fraud, plagiarism, and misappropriation—not of com-
mercial exploitation. And these are fears that have grown enormously in
an era of easy online publication. What it points to is not a need for

424 Christopher Kelty

stronger intellectual property law, but the need for an alternative system
of protecting reputation from abuse.

The need to somehow register priority and (metaphorical) ownership of
ideas is a problem that cannot be solved through the simple expansion of
existing intellectual property law. It will require alternative solutions.
These solutions might be technical (such as the evolution of the science
citation index—for example, cite-seer and LANL) and they might also be
legal (devices like the Creative Commons licenses, which require attribu-
tion, but permit circulation). In either case, science and technology are
both at a point similar to the one Robert Boyle faced in the seventeenth
century. A new way of “witnessing” experimental knowledge is necessary.
A new debate over the “public” nature of science is necessary.

Many people in OS/FS circles are aware of this relationship between
informal reputation and calculable monetary value. Even Eric Raymond’s
highly fantastic metaphorical treatment of reputation reports an impor-
tant fact: the list of contributors to a project should never be modified by
subsequent users (that is, contribution is inalienable). To do so is tanta-
mount to stealing. Similarly, Rishab Ayer Ghosh and Vipul Ved Prakash
(2000) also recognize this nonlegal convention; they combined it with the
formal availability of free software packages and created a tool much like
the Science Citation Index: it adds up all contributions of individuals by
grepping (using a Unix text search command) packages for e-mail addresses
and copyrights. We might call what they find “greputation,” since it bears
the same relation to reputation that money supposedly does to value. That
is, it is the material and comparable marker of something presumed to be
more complex—the reputation of a scientist—just as money is an arbitrary
technology for representing value.

In order to understand why reputation is at stake in science, we might
take this analogy a bit further and ask what exactly is the relationship
between money and value. Economic dogma has it that money is a stan-
dard of value. It is a numerical measure that is used to compare two
or more items via a third, objectively fixed measure. This is an unobjec-
tionable view, unless one wants to ask what it is that people are doing
when they are valuing something—especially when that something is an
idea.

However, from the perspective of Georg Simmel, the early twentieth-
century German sociologist whose magnum opus is devoted to the subject
(Simmel 1978), considering money as something that simply facilitates a
natural human tendency (to value things according to cardinal ranking) is
a sociologically and anthropologically illegitimate assumption. Humans

Free Science 425

are not born with such an objective capacity vis-à-vis the world around
them. Rather, since money is a living set of institutions that calibrate value
and a set of technologies (cash, check, credit, and so on) that allow it to
circulate or accumulate, then humans are caught within a net that both
allows and teaches them how to reckon with money—how to count with
it, as well as on it. Even if staunch neoclassicists agree that the rational
actor of economic models does not exist, that by no means suggests he
cannot be brought into existence by the institutions of economic life. To
borrow David Woodruff’s willful anachronism: “Humans are endowed only
with an ordinal sense of utility; they attain something like a cardinal sense
of utility (“value”) only through the habit of making calculations in
money” (Woodruff 1999).

If we consider this insight with respect to the currency of reputation, as
well as that of money, we can say the following: the standard of value
(money, or the citation) serves only to stabilize the network of obligations
thus created: in the case of money economies, a single cardinal value; in
the case of citations, a widely recognized, though sometimes disputed rep-
utation. The vast interconnected set of legal obligations that money rep-
resents can be universally accounted by a single standard—a cardinal value.
But if we reckoned the world of obligations using a different standard—a
nonnumerical one, for instance—then humans could also learn to express
utility and value in that system. Money, it should be very clear, simply isn’t
natural.

Therefore, a similar approach to scientific citations would have to focus
on something other than their cardinality. And in fact, this is exactly what
happens. Citations are simply not fungible. Some are good (representing
work built upon or extended), some are bad (representing work that is dis-
puted or dismissed), some are indifferent (merely helpful for the reader),
and some are explicit repayments (returning a citation, even when it is not
necessarily appropriate). Often the things that are most well known are so
well known that they are no longer cited (F = ma, or natural selection),
but this could hardly diminish the reputation of their progenitors. It
requires skill to read the language and subtleties of citations and to express
gratitude and repay intellectual debt in similarly standardized, though not
simply quantitative ways. There are whole stories in citations.

This description is equally accurate in open source and free software.
Although some might like to suggest that good software is obvious because
“it works,” most programmers have deep, abiding criteria for both effi-
ciency and beauty. Leaf through Donald Knuth’s The Art of Computer Pro-
gramming for a brief taste of such criteria and the interpretive complexity

426 Christopher Kelty

they entail (Knuth 1997). The scientist who does not cite, or acknowledge,
incurs irreconcilable debts—debts that cannot be reckoned in the subtle
currency of citations. The more legitimate the information infrastructure
of scientific publications, databases, and history books becomes, the more
essential it is to play by those rules, or find increasingly creative ways to
break them. In money, as in science, to refuse the game is to disappear
from the account.

Today, we face a novel problem. The institutions we’ve inherited to
manage the economy of citation and reputation (publishing houses, jour-
nals, societies and associations, universities and colleges) used to be the
only route to publicity, and so they became the most convenient route to
verification. Today we are faced with a situation where publication has
become trivial, but verification and the management of an economy of
citation and reputation has not yet followed. In the next section, I con-
clude with two cases where it will very soon be necessary to consider these
issues as part of the scientific endeavor itself.

A Free (as in Speech) Computational Science

In 1999, at the height of the dot-com boom, there was an insistent ques-
tion: “But how do you make money with free software?” I must admit that
at the time this question seemed urgent and the potential answers seduc-
tive. In 2003, however, it seems singularly misdirected. From the perspec-
tive of science and technology, where software can be as essential a tool
as any other on the lab bench, the desire to make free software profitable
seems like wanting a linear accelerator to produce crispier french fries. You
could do that, but it is a rather profound misunderstanding of its function.

I propose a different, arguably more important, question: “Can you do
science without free software?”

By way of conclusion, I want to offer two compelling examples of com-
putational science as it is developing today. The promise of this field is
evident to everyone in it, and these examples should be viewed as evidence
of early success, but also as early warnings. What they share is a very pre-
carious position with respect to traditional scientific experiment, and—in
terms Robert Boyle would understand—traditional scientific “witnessing.”
It is impossible to think about either of these endeavors without consid-
ering the importance of software (both free and proprietary), hardware,
networks and network protocols, standards for hardware and software,
and, perhaps most importantly, software development methodologies. It
is in the need to explicitly address the constitution, verification, and

Free Science 427

reliability of the knowledge produced by such endeavors that something
like OS/FS must be an essential part of the discussion.

Bioelectric Field Mapping
Chris Johnson is the director of the Scientific Computing Institute (SCI)
at the University of Utah. SCI is a truly stunning example of the kind of
multidisciplinary computational “big science” that relies equally on the
best science, the best software programming, and of course, the best hard-
ware money can buy. Dr. Johnson’s bioelectric field mapping project
(http://www.sci.utah.edu) extends the possibilities of understanding, sim-
ulating, and visualizing the brain’s electrical field. It makes EEGs look posi-
tively prehistoric.

The project makes sophisticated use of established mathematical and
computational methods (methods that have been researched, reviewed,
and published in standard science and engineering publications); neuro-
anatomical theories of the brain (which are similarly reviewed results);
mathematical modeling software (for instance, MatLAB, Mathematica);
graphics-rendering hardware; and a wonderful array of open and closed,
free and non-free software. It is a testament both to the ethos of scientific
ethos and to the best in management of large-scale scientific projects.

What makes Dr. Johnson’s project most interesting is the combination
of traditional scientific peer-review and his plea for more effective large-
scale software management methodology in science. Here is a chance for
the best of science and the best of business to collaborate in producing
truly exceptional results. But it is here that Dr. Johnson’s project is also a
subject of concern. In a recent talk, amidst a swirl of Poisson equations,
Mesh generation schemes, and finite element models, Johnson pointed out
the difficulty of converting file formats. Dr. Johnson’s admirable attempt to
create a computational science that weaves mathematical models, com-
putational simulations, and graphical visualization has encountered the
same problem every PC user in the world laments daily: incompatible file
formats.

Part of this problem is no doubt the uncoordinated and constant rein-
vention of the wheel that scientists undertake (often in order to garner
more credit for their work). The other part, however, concerns the legal
and political context where such decisions are made—and they are usually
not made in labs or institutes. This second and more serious problem con-
cerns whether the circumvention of particular file formats in scientific
research is affected by the institutional changes in intellectual property or
antitrust law. Even if it isn’t, knowing requires the intervention of lawyers

428 Christopher Kelty

aplenty to find out—and the unfortunate alternative is to do nothing.
These issues must be addressed, whether through licenses and contracts or
through the courts, in order to ensure that the ordinary activity of scien-
tists continues—and does not fall afoul of the law.

The best science, in this case, depends on an analogy with the princi-
ples and practices of free software and open source: not only are source
code and documentation resources that Dr. Johnson would like to see
shared, but so are data (digital images and data from high-end medical
scanners) as well as geometric and computational models that are used in
the computational pipeline. Only by sharing all of these creations will it
be possible for science as a distributed peer-reviewed activity to reach even
tentative consensus on the bioelectric fields of human brains.

An Internet Telescope
In order to avoid any suggestion that a large Redmond-based corpora-
tion is at fault in any of this, take a second example. Jim Gray, research
scientist at Microsoft, has been working on an “Internet telescope,” which
federates astronomical data from telescopes around the world (http://
research.microsoft.com/~Gray). His manifest skill in database engineer-
ing (he is a Turing Award winner) and his extraordinary creativity have
resulted in a set of database tools that can be used to answer astronomical
questions no single observatory could answer—simply by querying a
database.

Dr. Gray’s project is a triumph of organizational and technical skill,
another example of excellent project management combined with the best
of traditional scientific research. Dr. Gray is assisted considerably by the
fact that astronomical data is effectively worthless—meaning that, unlike
genetic sequence data, it is neither patented nor sold. It is, though, hoarded
and often unusable without considerable effort invested into converting file
formats. Gray will ultimately be more successful than most university
researchers and amateur database builders, because of the resources and
the networks at his command, but the problem remains the same for all
scientists: the social and normative structure of science needs to be kept
institutionally and legally open for anything remotely like peer-reviewed
and reliable knowledge to be possible. All of this data, and especially the
programming languages, web services, databases, and Internet protocols
that are used in the creation of the telescope, need to remain open to
inspection, and remain ultimately legally modifiable without the permis-
sion of their owners. If they are not, then scientific knowledge is not “wit-
nessed” in the traditional sense, but decided in advance by lawyers and

Free Science 429

corporate public relations departments (Dr. Gray gets around this problem
because of his skill in achieving informal and formal participation from
each participant individually—but this is probably a solution only
Microsoft can afford, and one that does not scale).

Can these sciences exist without free software, or something like it?
George Santayana famously quipped: “Those who cannot remember the
past are condemned to repeat it.” Now might be a time to both remember
the past, and to insist upon repeating it. Science, as an open process of
investigation and discovery, validation, and verification, is not a guaran-
teed inheritance, but something that had to be created and has yet to be
perfected. Openness can not be assumed; it must be asserted in order to
be assured.

430 Christopher Kelty

22 High Noon at OS Corral: Duels and Shoot-Outs in

Open Source Discourse

Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

The open source software (OSS) movement can be related to the societal
changes that started in the late 1960s: the rise of a network society sup-
ported by new information and communication technologies and the rise
of new forms of collective actions, which also have been referred to as “new
social movements” (see Touraine 1981; Melucci 1996; Thörn 1997). The
emergence of these movements has been explained by changes in the rela-
tions between the economic, political, and cultural powers and institutions
that have supported a transition from a modern to a late modern or pos-
tindustrial society and lately been linked to an understanding of the
importance of the rise of a global network society and new forms of
communication (Castells 1996; Giddens 1990). The emergence of a
network society, or information society, has involved new conflicts regard-
ing the control over information, knowledge, symbolic capital, and social
relationships. These are conflicts closely connected to unequal or trans-
formed power relations between different social positions in the new global
society. According to both Thörn (1997) and Melucci (1996), it is in this
social climate of opposition, ambivalence, and conflict that new forms of
collective actions have emerged.

American contemporary movements of the 1960s gave rise, as Castells
(1996) has shown, to an intellectual climate that contributed to and
inspired the march of technical innovations and the “culture of IT”.
However, the rise of information technology also gave birth to conflicting
ideas about how the tools to create and bring forth information should be
developed, and what they should look like. When large hardware and soft-
ware companies—such as IBM and later, Microsoft—slowly gained domi-
nance over the growing IT market, this had serious consequences for how
the power relations between different actors in the field of software devel-
opment were organized. A resistance to this development has been growing
around different advocates of open source and free software, raising

questions on the freedom of speech and information. Advocates of open
source and free software have also in recent years been noticeable in the
discussions on how to bridge the “digital divide,” thus trying to offer an
alternative IT infrastructure that avoids expensive licensing structures. In
order to achieve a position in the world of systems development as a
counter-movement to proprietary software actors, the members of the
open source movement have to be able to create a shared identity. As Thörn
(1997) points out, collective identity is one of the most important traits of
any social movement. Collective identity is created by, or related to, a
movement culture comprised of a relatively autonomous network of inter-
actions between different individuals, institutions, and organizations. In
order to be effective, movements have to be goal-oriented, and act as strate-
gic collectives that always strive toward social change. Collective identity
is a powerful force that has to be fully recognized when understanding
how social movements are assembled and constituted. Collective identity
provides an important context for the creation of meaning, social inte-
gration, and action. The symbolic dimension of collective action is to
manifest, and thereby constitute, the unity of the group. This is done
through a multidimensional process of communication—that is, rituals
and demonstrations—or with the help of texts. Collective identity thereby
incorporates different forms of narrative that create an overall meaning
for the individual, for his or her everyday practices, and for the symbolic
manifestations that are communicated by members. Accordingly, the
production and use of texts give new social movements a discursive form
(Thörn 1997).

Viewing Open Source from a Discourse Perspective

The concept of discourse builds on a social constructionist perspective
where language is seen as constitutive of social reality; this means that an
important access to reality is through language and its manifestation in
discourses. A discourse can be understood as a group of statements that
produce and define objects of knowledge, but also inform us in how to
conduct our social and cultural practices (Foucault 1972). Discourse is tied
to practice, and is articulated not only through text, but also through
metaphors, symbols, cultural codes, stories, pictures, and other forms of
representation.

Discourse constructs the subject and present reality in a certain way, thus
creating limits between true and false, relevance and irrelevance, right and
wrong. It also limits other ways in which a topic can be defined (Hall 1992).

432 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

Discourses thereby create webs of meaning that cluster around certain
topics. However, a discourse is not a closed entity, but is continuously
reconstructed in contact and struggle with other discourses. Different dis-
courses that represent certain ways of speaking about the world then strug-
gle for domination. This struggle concerns taking command in defining
the world from a certain point of view; that is, to become the normative
discourse defining social order and making sense of the world according
to that view. Discourses possess different powers, which in some sense
make us more secure, feeling safer in a world that is somewhat predictable,
but they also operate in disciplinary and authoritarian ways.

Analyzing discourses in the open source movement is not about reduc-
ing the movement to texts. It is, rather, a way to understand how collec-
tive identity is created, communicated, and managed in the form of “webs
of meanings.” Understanding discursive practices becomes especially
important because of the movement’s decentralized and networked char-
acter. In this chapter, we will analyze different discourses taking place both
within and outside the open source movement. First we present discourses
that are related to how a sense of “us” is created within the movement.
Then we discuss how authority and leadership is created, or how discourses
are “managed.” We then elaborate on how the enemy is constructed, and
how the enemy’s discourse fights back. Finally we address internal dynam-
ics between different actors in the open source community.

Constructing the Hacker

Developing discourses is vital for providing the members of the movement
with a meaningful context that enables creative software development
activities across organizational and geographical boundaries. People feel a
bond with others not because they share the same interest, but because
they need that bond in order to make sense of what they are doing. Dis-
courses in the form of texts and symbols enable members of a community
to affirm themselves as subjects of their action and parts of a collective
action. Actors in the open source movement handle a specific set of dis-
cursive practices. They gain status as they learn to master the rhetoric of
the community.

This process of socialization often starts with being a “newbie” and ends
with achieving the status of being a “hacker” (Bergquist and Ljungberg
2001). In order to be able to socialize new members into the community,
symbolic representations of the core values in the community must be
created and communicated. This is done in several ways: through virtual

High Noon at OS Corral 433

objects, symbols, strings of statements and messages, and with the help of
certain ways of associating with symbolic tokens that sometimes, from an
objective point of view, are only vaguely related to the core business of
open source. In this section, some examples will be given on how the
relationship between discourse, practice, and identity is constructed and
communicated in the open source movement.

One way to understand the collectiveness within the open source
community is through the concept “hacker.” Even if there seems to be
no unambiguous definition of the concept, certain characteristics like
creativity and a genuine interest for troubleshooting most commonly
describes the work of a hacker (see for example, http://wikipedia.org). The
online document “The New Hackers Dictionary” including the Jargon File
(Jargon File 4.3.1), which is well known within the hacker community,
gives a comprehensive insight in the tradition, folklore, and humor of the
hacker community. The Jargon File includes the Jargon Lexicon a compi-
lation of the specific vocabulary used by hackers. The Jargon File is one
instantiation of a discourse that is continuously replicated in different
forms in the community. Implicitly the documentation contains general
social and cultural aspects of what it means to be a hacker, what they
do, what their preferences are, and, in that sense, what defines them as a
collective.

The Jargon File is a continuing work-in-progress. The earliest version of
the Jargon File was created in university milieus, especially the MIT AI Lab
and the Stanford AI Lab and other communities that grew out of the cul-
tures around ARPANET, LISP, and PDP-10 in the 1970s. It was also in these
technical milieus that the concept of hacker came into use. Eric Raymond,
one of the leading figures within the community, has done the main work,
with the latest version updated and presented with the characteristic
version numbers: 4.3.1, 29 June 2001. It has been revised so that it
complements the cultures that have emerged due to new programming
languages, hardware and software applications: most prominently the C
language and Unix communities, but also, for example, IBM PC program-
mers and Amiga fans. The fact that Raymond has updated the original
Jargon File to include different hacker cultures indicates the importance of
defining the hacker community so that it represents different understand-
ings of what it means to be a hacker.

Eric Raymond divided the content in the Jargon Lexicon into three
categories: (1) slang, or informal language from mainstream English or
nontechnical subcultures; (2) jargon, “slangy” language peculiar to or
predominantly found among hackers, and finally, (3) techspeak, the formal

434 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

technical vocabulary of programming, computer science, electronics, and
other fields connected to hacking. The understanding of hacker culture
thus must be seen as a multidimensional process of communication
between different cultural manifestations deriving from both a social (real-
life) and a technical (virtual) level. The hacker culture takes inspiration
from and merges different cultural expressions. It also expresses different
distinct fields that stand in opposition to each other. In this process, we
can see several discourses take form. These involve hackers as a distinct
field that excludes other fields as nonhackers, but also “internal” fields con-
stituted by different hacker cultures as defined by their interests in and use
of different technologies.

Looking up the word hacker in the Jargon File, the affinity toward the
“intellectual challenge of creatively overcoming or circumventing limita-
tions” is considered the primary characteristic, but a hacker is also defined
as connoting “membership in the global community defined by the Net”
and as “a person capable of appreciating hack value” and one possessing
“hacker ethics.” Since the hacker community is described as a meritocracy
based on ability, it is also stated that hackers consider themselves some-
thing of an elite (Jargon File 4.3.1). The problem-solving aspects of partic-
ipation in the open source movement—to be able to fix a bug right away
and participate in rapid software development through knowledge
sharing—are characteristics commonly associated with the strengths of the
movement, and the skills of the programmers.

However, a common characteristic of movements is internal conflicting
relations between different groups of actors. In the open source movement,
some conflicts are due to different hacker cultures and traditions. In an
enclosure to the New Hackers Dictionary, Eric Raymond has incorporated a
section called “Updating JARGONG.TXT Is Not Bogus: An Apologia”
(Jargon File 4.3.1). In this text, Raymond responds to criticism from
hackers representing the PDP-10 culture. The criticism pointed out that the
Jargon File was Unix-centric, that Raymond lacked insider knowledge of
their culture, and that blending Unix and PDP-10 cultures distorted
the original jargon file. This illustrates an example of the importance
of experiences and meaning connected to a certain field of interest
and practices with its own historical process. It also points to the signifi-
cance of being accepted as a separate collective with its own cultural
identity. In Raymond’s answers to the criticism, he verified the fact that
the Unix and the PDP-10 community did have their own identities but
that they also belong together as being hackers. The “us” is thereby
expanded to include various groups and networks creating an even greater

High Noon at OS Corral 435

potential developer and user base. The tension between different (groups
of) actors within the open source movement, and between the open source
movement and the free software movement, is an interesting topic leading
to a deeper understanding of how collective identity is created and
managed in the open source movement. This topic is elaborated upon later
in this chapter.

Managing the Production of Discourses—The Leaders

Eric Raymond has become a leading figure within the open source move-
ment, and he is the president of the movement’s formal body, the Open
Source Initiative. He attained this position as a recognized contributor to
the Linux project, and as the author of a much-cited anthropological
analysis of the open source movement (Raymond 2001). He has also drawn
considerable attention to the open source community with, for example,
the publication of the “Halloween documents,” a set of confidential
Microsoft memos that discussed the potential threat from open source soft-
ware to Microsoft products. These memos were important for the open
source movement, in the sense that their competitors acknowledged the
potential of the movement.

Through these different types of contributions and through widespread
reputation, Raymond has become a key person in the open source move-
ment. Such leaders or “movement intellectuals” are interesting, because
they possess great power through the advantage of interpreting the orien-
tation, goal, and work of the movement. They have the power to formu-
late and set standards of what should be done, how it should be done, and
why it should be done. They also have the power to define and manipu-
late texts and symbols and arrange them within the discursive context. As
in the example of the Jargon File, we can see how Raymond tries to for-
mulate a “true hacker nature” as a strong symbol for a collective identity
throughout his vivid descriptions of how hackers are, and how they think
and code.

In the sense that movement intellectuals play a central role for identi-
fying the collective, they enjoy the ability to include and exclude (Thörn
1997). They create cultural forms that set the agenda for the movement,
but also create new forms of cultural and social understanding of the com-
munity. This can be exemplified by the rhetoric of different movement
intellectuals, as with the polemic between Eric Raymond and Richard Stall-
man, founder and leader of the free software movement from which open
source grew.

436 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

Stallman, a hacker formerly at MIT, has positioned himself as one of the
most prominent activist within the programming community, with large
contributions to free software, his GNU/Linux project, for example, and
as the founder of the Free Software Foundation (FSF). Stallman always
adopted a more ideological line in his work with free software, promoting
the freedom of hacking and information, than that found in the open
source movement. Taking a look at his personal website, his political inter-
est in different “freedom of speech”—and in the civil rights movements—
are evident. However, Raymond has a more pragmatic outlook, which
maybe is best explained via a well-known dispute between Raymond and
Stallman, initiated by a posting from Stallman to an Internet bulletin
board:

People have been speaking of me in the context of the Open Source movement.

That’s misleading, because I am not a member of it. I belong to the Free Software

movement. In this movement we talk about freedom, about principle, about the

rights that computer users are entitled to. The Open Source movement avoids

talking about those issues, and that is why I am not joining it. The two movements

can work together on software. . . . But we disagree on the basic issues. (Stallman

1999b)

Raymond responded with an essay where he stated that he could agree
on Stallman’s ideas about freedom and rights, but that it was ineffective
and bad tactics for the free software community to engage in those issues:

OSI’s tactics work [. . .] FSF’s tactics don’t work, and never did. [. . .] RMS’s [Richard

Matthew Stallman] best propaganda has always been his hacking. So it is for all of

us; to the rest of the world outside our little tribe, the excellence of our software is

a far more persuasive argument for openness and freedom than any amount of high-

falutin appeal to abstract principles. So the next time RMS, or anybody else, urges

you to “talk about freedom,” I urge you to reply “Shut up and show them the code.”

(Raymond 1999b)

Though the open source and free software movements share an ambi-
tion to create free software of high quality, and share mutual cultural
expressions through the hacker community, this is an example of a power
struggle where the leaders take different roles as symbolic organizers. It is
a battle that originates from different perspectives on how work should be
done and what the strategies are to be. Most importantly, this inspires
members to act on different forces and purposes when contributing to the
movement.

Last but not least, Linus Torvalds should be mentioned, as he is consid-
ered an icon of the open source movement. Because of his extraordinary

High Noon at OS Corral 437

contribution in leading the development of the Linux kernel and his
further work making decisions about contributions to the Linux kernel
project, he is considered one of the father figures of the open source move-
ment. Torvalds seldom comments on political issues concerning the work
of the movement. Torvalds keeps a low profile, which can be seen as a sym-
bolic incarnation of the hacker ethic. At the same time he is seen as the
charismatic leader of the movement. The charismatic leader is recognized
as being such by virtue of the extraordinary qualities that ensure him/her
a mass following (Melucci 1996). In this case, Torvalds has become a
symbol for the movement as such; he stands for the kind of values and
practices that are associated with the hacker. It might seem contradictory
to define a person who keeps low profile as charismatic, but then it is con-
sidered good manners amongst hackers not to brag about the exploits
made. A movement leader receives his/her position as a leader of the com-
munity if he/she is publicly acknowledged by the collective. In the hacker
context, this is therefore mainly a matter of exceptional contributions and
reputation. This is clearly expressed in the Jargon File by the definition of
demigod:

demigod n. A hacker with years of experience, a world-wide reputation, and a major

role in the development of at least one design, tool, or game used by or known to

more than half of the hacker community. To qualify as a genuine demigod, the

person must recognizably identify with the hacker community and have helped

shape it. Major demigods include Ken Thompson and Dennis Ritchie (co-inventors

of Unix and C), Richard M. Stallman (inventor of emacs), Larry Wall (inventor of

Perl), Linus Torvalds (inventor of Linux), and most recently James Gosling (inven-

tor of Java, NeWS, and GOSMACS) and Guido van Rossum (inventor of Python). In

their hearts of hearts, most hackers dream of someday becoming demigods them-

selves, and more than one major software project has been driven to completion by

the author’s veiled hopes of apotheosis. See also net.god, true-hacker. (Jargon File

4.3.1)

Us and Them—Constructing the Enemy

In order to be able to construct an “us” that can be successfully commu-
nicated within the movement, a “them” also has to be constructed in order
to sharpen the edges and help the movement build their collective iden-
tity. A “them” is a part of all movements. It has the function of strength-
ening the movement as well as legitimating its norms, values, and actions.
The following examples taken from the Jargon Dictionary show how
hackers define themselves when articulating what they are not. In the

438 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

humorous example of suit, a certain “hackish” lifestyle is expressed by an
ironic description of lifestyle tokens that belong to the other:

suit 1. Ugly and uncomfortable “business clothing” often worn by nonhackers.

Invariably worn with a “tie,” a strangulation device that partially cuts off the blood

supply to the brain. It is thought that this explains much about the behavior of suit-

wearers. (Jargon File 4.3.1)

The open source movement seems to have created a notion of open
source software being superior to proprietary software. A movement needs
an “enemy” to strengthen the community from the inside. In the open
source movement the enemy part is played by the proprietary software
industry, most often represented by Microsoft, which has played an im-
portant role as the “evil empire,” as in this example taken from the Jargon
File:

Evil Empire [from Ronald Reagan’s famous characterization of the communist

Soviet Union] Formerly IBM, now Microsoft. Functionally, the company most

hackers love to hate at any given time. Hackers like to see themselves as romantic

rebels against the Evil Empire, and frequently adopt this role to the point of ascrib-

ing rather more power and malice to the Empire than it actually has. (Jargon File

4.3.1)

The world of proprietary software is not only the evil enemy; it is also
portrayed as a world of less intelligence. In an example of “adbusting”
(figure 22.1), found at the “Micro$oft HatePage,” a certain “collective excel-
lence” constituting the open source movement is implicitly stated in con-
trast to what are considered the weaknesses of the “enemies.”

The argument is that even though the enemy has resources in the form
of people and money, the software developed is of low quality. The open
source movement has a superior organization, smarter developers, and a
culture that enables the movement to create software of higher quality
in less time. Open source software is based on real needs, addressing
real problems and developed in a fashion that secures the best quality
compared to proprietary software development, which is driven only
by the desire to make money and protect its intellectual property rights.
The “Evil Empire” and “Borgs” symbolize this oppression by monopolistic
software companies that try to limit the freedom of using and modifying
software.

Borg [. . .] In Star Trek: The Next Generation, the Borg is a species of cyborg that ruth-

lessly seeks to incorporate all sentient life into itself; their slogan is “You will be

assimilated. Resistance is futile.” In hacker parlance, the Borg is usually Microsoft,

which is thought to be trying just as ruthlessly to assimilate all computers and the

High Noon at OS Corral 439

entire Internet to itself (there is a widely circulated image of Bill Gates as a Borg).

Being forced to use Windows or NT is often referred to as being “Borged.”

An important part of constructing the enemy is the enemies’ own con-
struction of open source. First Microsoft appeared to ignore open source as
irrelevant and not a real threat. When the “Halloween documents” were
leaked to Eric Raymond, it became obvious that Microsoft saw it as a threat
and took it seriously. By annotating the memorandum with explanations
and ironic comments and releasing it to the national press, Raymond
made the memorandum part of the open source movement’s strategy
of constructing the proprietary software industry as an enemy. From being
an internal Microsoft affair, the Halloween documents developed into an
important story in open source folklore, embodying both the evilness
and clumsiness of the enemy. The Halloween documents confirmed
Microsoft’s status as enemy; Raymond even felt obliged to thank the
original authors:

This page originally continued with an anti-Microsoft jeremiad. On reflection,

however, I think I’d prefer to finish by thanking the principal authors, Vinod Val-

loppillil and Josh Cohen, for authoring such remarkable and effective testimonials

to the excellence of Linux and open-source software in general. I suspect that his-

torians may someday regard the Halloween memoranda as your finest hour, and the

Internet community certainly owes you a vote of thanks. (Raymond 2003a)

440 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

Figure 22.1
An example of “adbusting”

When the “enemies” get back at open source in the media, they attack
aspects of the software like quality and security, but also (mostly) its core
values, such as the free distribution of software code, particularly through
the GPL. The arguments draw on metaphors from cancer to communism,
and the GPL has even been likened to Pac-Man, the little monster eating
all in its way. It all serves to deconstruct the distribution model, arguing
that it will stifle innovation and eat the healthy part of the software indus-
try: According to Microsoft executive Jim Allchin, “Open-source is an intel-
lectual property destroyer. I can’t imagine something that could be worse
than this for the software business and the intellectual property business
(cited on CNET News.com Feb. 14, 2001). And Steve Ballmer, CEO of
Microsoft, added, “Linux is a cancer that attaches itself in an intellectual
property sense to everything it touches”, (cited in The Register, June 2,
2001).

From the open source movement’s point of view, these attacks are char-
acterized as FUD (Fear, Uncertainty, and Doubt), spread with the purpose
of maintaining Microsoft’s monopoly. FUD is defined as a marketing tech-
nique used when a competitor launches a product that is both better and
costs less than yours; that is, when your product is no longer competitive.
Unable to respond with hard facts, scaremongering is used via “gossip
channels” to cast a shadow of doubt over the competitors’ offerings and
make people think twice before using it. FUD has been alleged to have
been first used on a large scale by IBM in 1970s, and the technique is now
argued to have been applied by Microsoft.

Another part of this discourse attacks the free distribution model by
accusing it of being unAmerican: “I am an American; I believe in the
American Way, I worry if the government encourages open source, and I
don’t think we’ve done enough education of policymakers to understand
the threat” (Jim Allchin, of Microsoft, cited on CNET News.com, Feb. 14,
2001).

Microsoft’s rhetoric of the American way and of open source being
unAmerican is used by open source supporters, to associate Microsoft with
the McCarthy era and another way of being unAmerican. “If this contin-
ues I may one day be sitting in front of the House of Un-American Activ-
ities Committee with a modern McCarthy asking: Are you or have you ever
been an advocate of open source software” (Reed 2001).

Both proponents and opponents of free software and open source soft-
ware use the discourse about the “true American Way” to support their
claims. Discourses attached to open source thereby become related to webs
of meaning that are of profound significance to the people who make the

High Noon at OS Corral 441

claims—in this case, Americans—regardless of whether they are for or
against the movements. Microsoft refers to the software industry as the
American Way, because it is an expression of the free market and civil
rights. Free software and open source advocacy groups use the idea of the
American Way to argue that the “freedom” in free software and the “open-
ness” in open source connote American core values from the pioneering
era and the constitution. Symbolic objects can be found that support the
idea that the movements are an incarnation of the American Way; for
example, when Richard Stallman puts the American flag on his home page
together with the text “America Means Civil Liberties, Patriotism Is
Protecting Them.”

By citing Gandhi’s famous words, this author describes the state of the
process in the open source versus Microsoft combat: “ ‘First they ignore
you, then they laugh at you, then they fight you, then you win’ (Gandhi).
This is the exact path Microsoft has taken with open source software. When
I first got involved with Linux eight years ago, we were in the ignore stage.
We are definitely in the fighting stage now” (Reed 2001).

Dynamics within the Open Source Community

We have pointed out the persistent voices of proponents claiming the supe-
riority of the social production of technological achievements presented
by the open source movement. Openness is regarded as the key to tech-
nological excellence, profit making, different freedoms, and might even be
the way to world domination or a new sociotechnical order. This discourse
of supremacy, pride and self-assurance must be understood in relation to
the meritocracy of hacker culture proposing that ideas, innovation, and
problem solving form the fundamental basis of openness and freedom. The
hacker culture, with its roots in academia and science, expresses a “belief
in the inherent good of scientific and technological development as a key
component in the progress of humankind” (Castells 2001, 39). Linked to
this discourse is also the rhetoric about the different models used for the
“success” of open source: the bazaar approach, the principles of gift culture
and the peer-review process. Even if these aspects refer to what might seem
uncontested and coherent communitarian subcultural hacker values, as
well as the work for common good, these models include more or less insti-
tutionalized discursive practices that involve specific rules, authorities,
competencies (in other words, powers). These powers manage and coordi-
nate and therefore control the social organization of open source com-
munities and work, but also define the relevance and rank the individual

442 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

performances of the contributors. As highlighted by an open source devel-
oper, “If you look closely, there really isn’t a bazaar. At the top, it’s always
a one-person cathedral. It’s either Linus, Stallman, or someone else. That
is, the myth of a bazaar as a wide-open, free-for-all of competition isn’t
exactly true. Sure, everyone can download the source code, diddle with it,
and make suggestions, but at the end of the day it matters what Torvalds,
Stallman, or someone else says” (Wayner 2000, 115).

Due to the transnational feature and Internet-based networking aspects
of the extensive open source movement, the best strategy for a person
willing to contribute to the movement is either to join a project group or
start a project on his/her own. The keystones of the development process
within the project group are the open communication, cooperation, and
sharing of resources (ideas, knowledge, and information). The peer review
system is a way to ensure the quality of the development processes within
different projects. Yet, as suggested in the previous quote, the openness of
the development process is not always in the end the common cause of
the community, but rather determined by the hacker elite. Raymond
(2001) has characterized the sharing of personal assets as a gift culture.
There is often no monetary compensation to be expected for efforts con-
ducted, which is in line with the informal hacker ethic not to use common
resources for personal benefit. Contributions to the movement therefore
have to be explained in terms other than being based on the traditional
cost-benefit rationality (Bergquist and Ljungberg 2001). Rather, the bene-
fits are those of being part of and learning from the community, and the
inner satisfaction of being able to contribute and being acknowledged
for the efforts made, as well as the impact the community has on the sur-
rounding world. Reputation and status due to intellectual and technolog-
ical skills as a driving force is of course comparable with the aspirations
within the academic tradition, as noted by Castells, for example, who also
reminds us that the Internet was born out of academic circles where the
academic values and habits—such as academic excellence, peer review,
openness in research findings, credit to the authors of discovery, as well as
academic ranks—“diffused into the hacker culture” (Castells 2001, 40).

It is evident that open source software development can be understood
as some kind of gift culture. However, exchanging gifts does not auto-
matically create a society without borders, driven only by individuals’
inner satisfaction, where everyone steps back for the sake of the common
good. An important dimension is also how power structures the exchange
of gifts. This element in gift giving has been analyzed by the anthropolo-
gist Marcel Mauss in The Gift (1950/1990). Mauss understands gift giving

High Noon at OS Corral 443

as the transaction of objects coordinated by a system of rules. The rules
are in fact symbolic translations of the social structure in a society or a
group of community members. He argues that giving a gift brings forth a
demand for returning a gift, either another object or, in a more symbolic
fashion, forces of power connected to the objects. Gift giving therefore
creates social interdependencies and becomes a web upon which the social
structure is organized. To give away something is to express an advanta-
geous position in relation to the recipient.

Gifts therefore express, but also create, power relations between people.
A gift culture, in this sense, has the power to discipline loosely coupled
networks of individuals with no organizational forces in terms of economy
or management that can otherwise force individuals to behave in a certain
way. The gift culture in the open source setting is thus often, in contrast
to traditional gift giving between two persons, rather an exchange between
a contributor and the whole community of developers and users. There-
fore, the obligation of returning a “favor” lies more, as already suggested,
in the symbolic powers of acknowledgment, status and gratitude
(Bergquist and Ljungberg 2001). Bergquist and Ljungberg (2001) have
pointed out several aspects of how power and social stratification are
expressed within the open source gift culture. For example knowing how
and when to show respect and appreciation is a commonsense “netiquette”
within the OS community. The norms and values though are not obvious
for a first time visitor or a “newbie” who has to be socialized into the
outspoken as well as the nonverbal practices of the community. Even if
a common trait of the open source discursive rhetoric is the warm wel-
come of an expansion and growing strength of the movement, a more
unspoken discursive practice built upon a memory from the tribal days
of the techno-elite and a strong meritocracy where talent and advanced
skills are all that matter, are quite evident. The frequency of FAQs for begin-
ners to learn the most basic issues—from the “flamewars” against bad con-
tribution or behavior and, as Bergquist and Ljungberg have pointed out,
the humiliation of oneself before a more advanced community as a sur-
vival strategy of a newbie—are some aspects that point to elitism and a
strong meritocracy. Norms and values are not always accepted without
protest, though, and countermovements are being developed. In the
following example from a newsgroup posting, the practice of flaming is
questioned:

More than once I have had the urge to begin contributing to the community. I have

written code, documented it, and gained authorization for its release. But at the last

minute I always hesitate and then stop. Why? I think I fear the fangs of the com-

444 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

munity. At this point, everywhere I turn, it’s a big flamefest and getting quite tire-

some. Its gotten to the point where it seems one has to be some sort of Jedi

Master–level coder to contribute. On more then a few mailing lists, I have seen con-

tributors flamed for their contributions! Flaming someone for giving something

away. It’s incredible. (In Bergquist and Ljungberg 2001, 315)

As the posting reveals, the practice of flaming is due not only to inap-
propriate behavior and the overruling of core communitarian values, but
might also be used by the inner circle of a project team as a means to reject
contributions. The system of peer review might in this way be a powerful
tool to manifest authority and maintain the hierarchy of “excellence.” The
open source peer review model has no objective criteria for what counts
as relevant or impressive contributions. On the other hand, project leaders
try to be reasonable when making their selections. But what seems rea-
sonable for one person is not always reasonable for another. Peer review is
thus a social mechanism, through which a discipline’s experts or the core
members of a community maintain control over new knowledge entering
the field (Merton and Zuckerman 1973; Chubin and Hackett 1990). Peer
review can thus be seen as a way of organizing power relationships within
a given community, but as we have also seen, in relation to other fields of
social practices.

Conclusion

A discourse perspective gives important access to an understanding of how
networked movements like open source are organized and managed. It also
brings insight to the power struggles going on between different actors.
One interesting point is that the values created within the movement’s dis-
courses are now spreading to larger circles outside the movement, expand-
ing its territory. Thus, it can be concluded that the force of open source
discourses is very powerful.

First, we illustrated the internal discourses forming open source identity.
Then we described the struggle between open source and proprietary soft-
ware (particularly Microsoft) discourses. The discourses about “the Ameri-
can Way” is an example of how both the open source movement and the
proprietary software industry try to legitimate activities by relating to an
external discourse about “good” American society.

In conclusion, we note that external actors in public sector and govern-
ments, representing a particular user category, have also linked to several
open source discourses in order to change their policies and practices
regarding information systems. These new discourses have the potential

High Noon at OS Corral 445

enormous for an impact. Governments exist in every country and repre-
sent large user groups. The public sector discourse relates to several of the
themes originating in open source discourses, some of them previously dis-
cussed in this chapter. Concepts like “freedom” and “openness” easily
relate to democratic values, and in some countries (for example, Sweden)
it is a constitutional right to have access to large parts of governmental
information. Thus some would ask: Why should the source code of public
sector information systems therefore be excluded from this openness?
Because governments invest in information technology using taxpayers’
money, there is a related demand to increase the value for money.” For
these reasons, it seems likely that the next major shoot-out will take place
in the governmental and public sector arena.

446 Anna Maria Szczepanska, Magnus Bergquist, and Jan Ljungberg

23 Libre Software Policies at the European Level

Philippe Aigrain

Initial Drivers and Motivations

Until the last months of 1998, there was only a limited awareness of free
software/open source software (“libre software” for the rest of this chapter)
in the various European institutions.1 There was a libre software section in
the portal of the Information Society Project Office, but it was considered
a marginal activity. A few staff members were also actively involved as
developers in projects or as users. When the libre software achievements
became more visible, including, in business circles, through the efforts of
the Open Source Initiative campaign, a variety of factors led to a series of
libre software initiatives. This did not happen through an overall policy
impulse, as there was not—and to my knowledge still is not—an overall
policy on these issues. Instead, as is often the case, a number of people
driven by a variety of motivations were each able to build a sufficient case
to convince their decision-making hierarchy that it was worth “giving it a
try.” This mostly occurred in the European Commission, which, due to its
policy proposal role, is open to experimental actions. It is interesting to
recall the motivations of these initiatives.

Within the research funding programs, the initial impetus arose from:

� The growing frustration with the poor dissemination, usage, and com-
mercial exploitation record of European software research results licensed
under proprietary terms2

� A positive vision of an information society based on open creation and
exchanges of information, knowledge, and contents

In policy and regulatory units, as well as in the European Parliament,
security and privacy concerns were an additional driver. Within units
dealing with European administrations data interchange (closely con-
nected with National Member States IT for administration offices), the fear

of excessive dependency upon supplier(s) and the search for long-term
control of costs were the initial drivers.

At the same time, there was a growing criticism by libre software groups
of the European Commission regulatory initiatives; in particular, in the field
of software patentability. This led a few software technology-aware persons
(including myself) to try to better understand and interface with these
initiatives. Little did we realize at the time that it would become a heavy
challenge, and one that we would end up perceiving as engaging the full
future of human rights and intellectual exchanges in our civilisation.

From the start, the individuals involved in exploring potential libre
software related actions chose to coordinate their efforts. Coordination
between technology research actions and policy units was encouraged by
higher management. Furthermore, open, informal horizontal cooperation
is quite common in the European Commission administration, at least
when no significant budget spending or regulatory initiative is at stake. An
initial step was the creation of an informal group of external experts
(chosen because they came from different countries and different libre soft-
ware backgrounds, such as community NGOs, companies, and technical
projects). These experts were asked to draft an issues paper,3 which was
finalized in November 1999 and presented at the IST’99 Conference in
Helsinki and publicly debated until a workshop concluded this debate in
March 2000. This report made a number of recommendations in various
domains, including research and development policy, standardisation,
rejection of software patentability, education, and usage in administra-
tions. It received significant attention.4 Parallel initiatives were developed
in European countries, such as the KBST report5 in Germany and the
Bouquet du Libre Prime Minister agency action6 and the National Software
Research Network (RNTL) report7 in France. Together with recommenda-
tions given by the official Advisory Group of the IST Programme (ISTAG),8

these helped to create a favorable environment for implementing some of
the proposed actions.

Research and Technology Development: From Experimental Actions to
Mainstream Scheme?

The European Working Group on Libre Software and the IST advisory
group suggested some specific domains or modes of support for libre soft-
ware innovation. ISTAG pointed to platform and infrastructural software,
meaning software on top of which many applications or services can be
built. The Working Group on Libre Software recommended that support

448 Philippe Aigrain

particularly target libre software whose development called for an initial
investment going beyond what normal individual or community projects
can afford before the “first threshold of usefulness” can be reached, the
idea being that it is only when such a threshold of usefulness is reached
that a community development process can take over. But there were some
challenges to address beyond these orientations. For example, how did one
get the innovative libre software developers involved in types of programs
that they generally ignored, or perceived as being reserved for large cor-
porations or their established academic partners? And how could one make
sure that despite all the inherent management constraints to European-
level funding (calls for proposals and related delays between proposing a
project and actual start of funding, and financial viability requirements for
participants, for instance), the participants would still find the game worth-
while, and that practical results would truly emerge? How could one ensure
the quality of the peer evaluation process used for the selection of project
funding, and guarantee that moving the selection of projects at an earlier
stage compared to the community-based developments would not bias the
overall development ecosystem?9

The approach taken was pragmatic. A first call was published calling
for the adoption of libre software platforms in embedded systems. This
domain had been chosen because there were strong European activities in
the field, and because there were indications of the great potential value
of libre software platforms, but also because there was some reluctance to
make the initial steps in that direction. European funding often acts as a
mechanism for “unlocking” such situations. A limited number of projects
were selected in 2000, mostly in the areas of embedded telecom (gateways,
routers) and industrial systems (controllers, real-time systems). These pro-
jects have been technically successful, demonstrating the performance and
reliability of libre software platforms in these demanding application
spaces. Even more significantly, though it was not required, these projects
have actually released new libre software. The release has ranged from
release of tools developed (or adapted) in the project, to the release of the
full software.10

Although initiatives supporting the adoption of libre software platforms
were having some impact, the main aim of research and development
actions was to make possible the development of innovative libre software
in areas where it would not exist without EC funding. After a limited exper-
imentation in 2000, a specific call for proposals11 was organised in 2001
under the heading “Free Software Development: Towards Critical Mass.”
Seven projects were selected for a total budget of a little more than €5

Libre Software Policies at the European Level 449

million, which represents only 0.16 percent of the overall IST program
funding for research in the 1999–2002 period. Five software developments
projects were driven by user organizations and software suppliers (includ-
ing a limited number of academic research labs), all wanting to adopt libre
software strategies. They targeted next-generation components for some
essential information society applications, such as large-scale public key
infrastructures and their applications, reference implementation for stan-
dards, and agent-based workflow tools for administrations. Two projects
are trying to address specific needs of the libre software development
process. The AMOS project is providing indexing and searching technology
for libre software packages and components, and the AGNULA project is
developing and disseminating specialized audio/music libre software dis-
tributions (including innovative software from music research centres) and
is providing advanced hardware detection and configuration facilities.

These actions remained limited in scope. In parallel, libre software pro-
jects emerged at the initiative of external participants in other domains of
the IST programme (IT for health, education, mathematical software or
libraries). However, overall the share of libre software in all software having
received IST program funding remained arguably below 1.5 percent. Is it
possible to make libre software a mainstream or default choice for publicly
funded research software, as the author,12 the UK government policy
paper,13 and grassroots petitions14 have all proposed? Progress in this direc-
tion within the European research programs would call for a deep rethink-
ing of the intellectual property rules built into these programs. The
European research actions are predominantly giving partial (shared)
funding to cooperative efforts between industry and research partners from
various countries. As a result, the funding contracts have built-in rules
granting participants the property of results, and pushing them to use
“adequate and effective protection” for these results. Many experts have
argued that use of libre software and open contents licensing is indeed an
adequate and effective means to reach some essential objectives of the
research policy.15 However, the inertia in interpreting the intellectual prop-
erty rules plays in favor of restrictive licensing approaches and extensive
usage of patent mechanisms that create heavy transaction costs in the dis-
semination path for results, or even inhibit some development models.

A Libre Software Technology Strategy?

Will it be enough for libre software to be under a libre software license to
achieve the goals that motivate its promoters? One can doubt that it was

450 Philippe Aigrain

ever enough. Without the sound peer-to-peer architecture of the Internet,
without some nice modular properties of UNIX systems that could be
further elaborated in GNU/Linux (despite other limitations), libre software
would have achieved much less towards the values that motivate it. In the
keynote speech he delivered at the Georgetown University Open Source
Summit in October 2002, Tim O’Reilly stressed the need for libre software
developers to become more aware of the link between what they try to
achieve through licensing regimes and the nature of the information
society infrastructure they are developing. One particularly difficult
challenge is that this must today be achieved at all three “layers” identi-
fied by Yochai Benkler:16 the physical computing and network infrastruc-
ture layer, the logical software layer, and the information and contents
layer.

At the physical computing and network layer, we are faced with some
risks for the peer-to-peer structure of the Internet and its end-to-end prop-
erties, and even stronger risks for the end-user control on computing. Can
new forms of networks such as ubiquitous mesh wireless networks repre-
sent an alternative to the “re-broadcastising”17 of the Internet? One can
hope so, even if in some national contexts, the regulatory context for open
wireless networks is not favorable. Meanwhile, it will also be necessary to
preserve the structure of the classical Internet.

Furthermore, the introduction of trusted computing platforms—in par-
ticular, in the context of Digital Rights Management systems—is the most
visible symptom of a general attack against end-user control on comput-
ing platforms, an attack that could simply ruin the promise of informa-
tion technology for culture and for democracy. These threats arise from
the Palladium18 or similar products. They likewise arise from trends towards
creating information devices (for instance consumer electronics devices or
e-books) that are supposedly open platforms, but which are quite limited
in practice. Often, users cannot physically control which software is
running, nor install new software, or can install only software that is
“approved” by some central supplier. This situation will make clear for
everyone that libre software alone is not enough: a libre software imple-
mentation of a totally closed system such as Palladium-based DRM will just
work against the open cooperation platform that libre software advocates
have created and are expanding. As with standards, an end-to-end analy-
sis of openness is required: it is not enough for one component to be open,
it is the full chain of components necessary to a realistic usage situation
that must be analyzed to understand whether it is under user control or
open.

Libre Software Policies at the European Level 451

At the software logical layer, similar risks arise from the monopolization
of some critical functions of interaction between people and software com-
ponents: authentication, identity management, security management. The
libre software communities have identified these risks, and there are alter-
natives in development, but it is unclear whether they carry the sufficient
momentum.

Finally, the information, media and contents layer will have critical
cultural and societal impact. Open information and contents, creative
commons, open science publishing, and other forms of cooperative knowl-
edge production from distributed genome annotation to Wikipedia and
alternative networked media are among the most exciting achievements
of our times. Their continued development calls both for the protection
of the open infrastructure that enables them, and for new innovative func-
tionality to enable more people to contribute to their increased quality.
This includes ability to criticize centralized media (broadcast in particular)
and to publish the results of this criticism according to quotation and other
fair use types of rights.

On these issues, the European institutions have not defined policies, nor
even minimal requirements, and probably no other government has either.
But in the absence of such requirements, large integrated media industries
and a few dominant players in information or communication technology
will simply roll out technology and obtain legislation to stop what they
fail to understand, or what they see as a danger to their established
businesses.

Information Technology for Administrations

Around 1998, use of libre software became an issue on the government/
administration agendas of most European countries. In September 1998,
Roberto di Cosmo, a researcher, and Dominique Nora, a journalist, pub-
lished “Un hold-up planétaire, la face cachée de Microsoft.”19 In addition
to criticizing Microsoft’s approach to technology, business, and competi-
tion, it drew the attention of the general public to the risks of having
one company controlling the essential tools of information technology.
The authors called for national and European governments to support
usage of what they saw as the only practical alternative: libre software
systems. In parallel, some civil servants in IT central agencies and in local
government started being able to build cases for a more voluntary
approach to the introduction of libre software solutions. Finally the
European Parliament Science and Technology Office of Assessment pro-

452 Philippe Aigrain

duced a report on the Echelon system of universal surveillance of com-
munications. This led the Parliament to adopt a resolution in 1999,20 in
which the Parliament urged:

the Commission and Member States to devise appropriate measures to promote,

develop, and manufacture European encryption technology and software and above

all to support projects aimed at developing user-friendly open-source encryption

software; calls on the Commission and Member States to promote software projects

whose source text is made public (open-source software), as this is the only way of

guaranteeing that no backdoors are built into programmes.

Even if this text was somewhat ambiguous on the definition of open
source software, and even though such resolutions are not truly binding
for the European Commission, it was a clear political signal.

Four years later, explicit policies are in place in several countries, imple-
mented in general through central government information technology or
e-government agencies. This is the case, for instance, in Germany (KBST,
BMWi-Sicherheit-im-Internet), France (ATICA, now renamed ADAE), the
UK (Office of the e-Envoy), the Netherlands, and Italy (AIPA). Other coun-
tries are doing preliminary studies or implementing pilot experiments.
Regions and local governments are also very active. Those countries imple-
menting direct policies use a variety of instruments:

� Guidelines for, and exchanges of experiences between administrations
that wish to develop usage of libre software
� Emphasis on standards for which libre software implementations exist
� Tendering of libre software components for some layers (cryptography
and secure e-mail or groupware in Germany)

In terms of usage rates, there is a wide diversity. The FLOSS survey spon-
sored by the European Commission21 found that in 2002, the current and
directly planned use in German public sector ranged from 44 percent for
small establishments to 69 percent in large establishments, while the com-
parable figures were 16 to 23 percent only in Sweden. These figures follow
closely the figures for the private sector usage. One should be cautious
when interpreting them: they do not represent the share of libre software
compared to proprietary software, but only the percentage of establish-
ments consciously using libre software in parts of their IT infrastructure.
As much as 12 percent of German establishments (companies and public
sector) have libre software on the desktop.

In the practical implementation of libre software usage in administra-
tion policy, the key motivation for governments lies in supplier indepen-
dence, and greater control over the evolution of their infrastructure. In the

Libre Software Policies at the European Level 453

already mentioned FLOSS study, 56 percent of those companies and public
sector entities using libre software quoted it as an important factor, making
it clearly the most important single motivation.

Except in Germany, where a voluntary policy was conducted, the very
slow progress towards actual introduction of libre software solutions in
administrations has led to an increased pressure for legislation in Europe,
as in most areas in the world. Laws or regulation pushing a more proac-
tive approach to the introduction of libre software solutions in adminis-
trations have been adopted in Andalucia and Catalonia, or were proposed
at several levels of the Belgium administration.

The European institutions had a timid approach to introduction of libre
software in their own administration, limiting it to some server-side soft-
ware and more recently a limited pilot of introducing it on desktops in the
European Commission. This shyness is not surprising: for years, the IT
departments have been asked to build an infrastructure that would be as
integrated as possible, supporting as few different “products” as possible.
The recruitments were conducted at insufficient level, favoring, at least at
operational level, the presence of staff with know-how centred on to the
configuration and management of solutions from a given provider. In some
cases, there are high operational challenges: the European Parliament, for
instance, manages one of most multilingual large-scale public Web sites.
Of course libre software solutions could support all these operations, but
there is strong inertia working against change. There is growing con-
sciousness that this supposed cost limitation in the short term actually
works against cost and functionality control in the long run, but it is far
from being yet translated in concrete action.

The European Commission programs have nonetheless played an impor-
tant role in favoring pooling and exchange of libre software experiences
between administrations in Europe. This was mostly achieved through the
IDA program22 of Interchange of Data between Administrations, and, to a
lesser extent, in the e-Europe action plans. IDA first conducted a survey of
libre software for use in the public sector, then initiated actions for pooling
libre software produced by the administrations themselves, and also con-
ducted a study on migration towards libre software in a German regional
government.

Information Technology for Development and Social Inclusion

The great potential of libre software for development and social inclusion
has long been emphasized. The cost aspect of it, though it might act as a

454 Philippe Aigrain

driver, is only one limited aspect of the benefits of libre software in devel-
oping countries, deprived regions, or urban areas. The empowerment of
persons and groups to not only use technology, but understand it, at the
level and rhythm that fits them, with the resulting ability to become active
contributors and to innovate are the essence of libre software. Of course
libre software can play this role only if some basic infrastructure and ser-
vices are in place: from power supply to telecommunication, education,
and health. But experience in even poorest countries has shown that these
two areas (basic infrastructure and libre software empowerment) can be
worked out in parallel and contribute to one another.

It is thus not surprising that every development-minded organization,
from UNESCO to UNDP, UNCTAD, and the World Bank InfoDev program,
has given a more or less explicit role to libre software. The developing
countries’ national and local governments have developed policy that is
often more explicit and more voluntarist. The breadth of these actions is
reflected, for instance, in the series of EGOVOS conferences.23 Two exam-
ples can be taken from the European Commission development actions.
The @LIS programme24 of cooperation between Europe and Latin America
in the field of information society has included libre software as one of its
objectives (in association with open standards). In Vietnam, the European
Commission delegation has provided technical support to the ongoing
actions there, which have been analyzed in an interesting paper by Jordi
Carrasco-Munoz.25

The social inclusion contribution of libre software is not limited in any
sense to developing countries. Several European regions or local govern-
ments have actually centred their regeneration or development pro-
grammes on libre software, including the Junta de Extremadura LINEX
programme26 in Spain, the libre software technopolis in the French city of
Soissons,27 and the UK region of West Midlands.28

A Software and Information Commons Perspective on the Crisis of
Intellectual Rights

The interface between libre software and the information commons, on
one side, and the ongoing regulatory or legislative efforts on the other is
difficult, to say the least. Regulatory efforts have often focused on widen-
ing the scope, the duration, the intensity, and the enforcement of restric-
tive intellectual property instruments. The scope of this chapter does not
allow for discussing this issue in depth, but it is worth stressing a few
important perspectives.

Libre Software Policies at the European Level 455

The tension is evident in crisis mode when a regulatory or legislative ini-
tiative is challenged for its possible harm to libre software, information
commons and open contents, or more recently, simply for harming fun-
damental human rights by setting extreme enforcement mechanisms.29 But
neither the community players, nor those people who understand these
matters in administrations, can afford to do case-by-case battles on each
of these texts. In addition to limiting damage from some critical texts, one
must work out why all this is happening, and set new foundations for
approaches that would consider common goods not as limited exceptions
but as a realm in its own rights.

Worldwide, a few contributors to intellectual debates30 have tried to set
these new foundations. The key idea is that informational commons, from
software to contents, scientific information and publishing, and coopera-
tive media are to be considered in their own rights, and not as tolerated
anomalies. Of course, one can only be happy when the existence of these
commons proves to be extremely favorable to the development of markets,
as is often the case. But in arguing it, one should never forget that the first
contribution of informational commons, the one we can see as the cor-
nerstone of a new civilization, lies simply in their existence, and in the
exchanges that human beings can build on its basis.

Notes

Views presented in this chapter are the author’s and do not necessarily represent

the official view of the European Commission. At the time of the drafting of this

chapter, the author was head of sector “Software Technologies” in the Information

Society Technologies Programme of the European Commission. He left that posi-

tion in May 2003. He is today the CEO of Sopinspace, Society for Public Informa-

tion Spaces, a company developing free software tools and providing services for

public debate on complex technical issues.

1. Key political institutions at the European level are: the European Commission,

which has policy proposal and policy implementation roles; the European Council,

representing the Union member states, which has policy decision and legislative

roles; and the European Parliament, which has legislative and budgetary power.

2. It is ironic that some proprietary software companies today attack libre software

policies as hostile to commercialization of research results, as it is precisely the

failure of proprietary licensing to put results in practical usage that motivated some

of these policies. In other terms, it might well be that commercialization (in the

proprietary licensing meaning) defeats commerce (in the human and economic

sense).

456 Philippe Aigrain

3. Report from the European Working Group on Libre Software: “Free Software/

Open Source, Opportunities for Europe?” is available at http://eu.conecta.it/

paper.pdf.

4. Notably thanks to its Slashdotting at http://slashdot.org/article.pl?sid=99/12/

15/0943212.

5. An English version of the original report from Egon Troles is accessible at

http://www.kbst.bund.de/Anlage302856/KBSt-Brief+-+English+Version.pdf. General

information on KBST open source software actions is at http://linux.kbst.bund.de.

6. Now at http://www.adae.pm.gouv.fr.

7. Accessible at http://www.industrie.gouv.fr/rntl/.

8. Known as ISTAG, this advisory group brings together high-level information

and communication technology industry experts, academic research experts, and

some national and regional government experts. See ftp://ftp.cordis.lu/pub/

ist/docs/istag_kk4402472encfull.pdf for a recent report giving libre software

recommendations.

9. In community-based software development, the initial investment (often by a

single individual) is followed by a selection phase during which many initiated

project fall out. This step is thought by some to be a waste, but one can also see it

as a guarantee of exploring sufficiently diverse paths. To keep the process as open

as possible, we invested a lot in inciting experts of all flavors of libre software com-

munities and related industries and researchers to register in the expert databases.

10. For an example of full distribution, see the project OPENROUTER at

http://www.inaccessnetworks.com/projects/openrouter/project/software/distribu

tion_html.

11. See http://www.cordis.lu/ist/ka4/tesss/impl_free.htm#historical for a record of

specific RTD actions targetting libre software, and http://www.cordis.lu/ist/ka4/tesss/

impl_free.htm#running for a list of all libre software projects selected during the

fifth framework program.

12. Philippe Aigrain, “Open Source Software for Research,” Proceedings of the

Global Research Village Conference on Access to Publicly Funded Research, OECD,

Amsterdam, December 2000.

13. http://e-government.cabinetoffice.gov.uk/assetRoot/04/00/28/41/04002841.

pdf.

14. http://www.openinformatics.org/petition.html.

15. For example, the development of basic scientific and technical infrastructure,

the creation of standards, and the creation of new markets by initiation of innova-

tive usage. See, for example, the report of the Adaptation and Usage of IPR for

Libre Software Policies at the European Level 457

ICT-Based Collaborative Research working group of European Commission, 2003,

http://europa.eu.int/comm/research/era/pdf/ipr.ict.report.pdf.

16. Yochai Benkler, “Property, Commons, and the First Amendment: Towards a Core

Common Infrastructure” (White Paper for the Brennan Center for Justice, March,

2001). Available at http://www.benkler.org/WhitePaper.pdf.

17. For example, the introduction of differentiated quality of service levels or the

development of IP over something else, where the something else is under the

control of broadcasters or operators, both technically and with regard to terms of

usage, or the deployment of asymetric bandwidth.

18. Palladium is Microsoft’s hardware-based implementation of the Trusted Com-

puting Platform Alliance specification. Microsoft now claims that it is not specifi-

cally targeting Digital Rights Management applications and that it is compatible

with user control of software running on a computer, but there is some evidence

that it will be used mostly for DRM, and could lead to users completely losing

control, unless they accept to live in a ghetto, severed from any access to “protected”

contents.

19. Calmann-Lévy, Paris.

20. http://www2.europarl.eu.int/omk/sipade2?PUBREF=-//EP//TEXT+TA+P5-TA-

2001-0441+0+DOC+XML+V0//EN&L=EN&LEVEL=3&NAV=S&LSTDOC=Y.

21. http://www.infonomics.nl/FLOSS.

22. http://europa.eu.int/ISPO/ida/jsps/index.jsp?fuseAction=

showChapterandchapterID=134andpreChapterID=0-17.

23. http://www.egovos.org.

24. http://europa.eu.int/comm/europeaid/projects/alis/index_en.htm.

25. Jordi Carrasco-Munoz, “The case for free, open source software as an official

development aid tool, ASI@ITC News, 17.

26. http://www.linex.org.

27. Soissons Informatique Libre, http://www.sil-cetril.org/.

28. http://telematics.cs.bham.ac.uk/seminars/linux/.

29. See the recent directive on Intellectual Property Enforcement, initially designed

to fight counterfeiting and piracy of physical goods, but extended in scope so that

it could lead to extreme measures on alleged infringers of property rights for intan-

gibles, those providing infringes software means, or even those accused of inciting

infringement.

30. In addition to the well-known works of Lawrence Lessig, see in particular

the works of David Bollier, accessible at: http://www.bollier.org; for instance, his

458 Philippe Aigrain

“Why open source software is fundamental to a robust democratic culture”

address to the Georgetown University Open Source software in October 2002,

http://www.bollier.org/pdf/Georgetown_remarks_%20Oct2002.pdf. See also Yochai

Benkler’s “Coase’s Penguin, or Linux and the Nature of the Firm,” Yale Law Journal,

112, 2002, http://www.benkler.org/CoasesPenguin.html, and the contribution of the

author of this chapter: “Positive intellectual rights and information exchanges,”

http://opensource.mit.edu/papers/aigrain.pdf, expanded in a book to appear in early

2005 at Editions Fayard.

Libre Software Policies at the European Level 459

24 The Open Source Paradigm Shift

Tim O’Reilly

In 1962, Thomas Kuhn published a groundbreaking book entitled The
Structure of Scientific Revolutions. In it, he argued that the progress of science
is not gradual, but (much as we now think of biological evolution) a kind
of punctuated equilibrium, with moments of epochal change. When
Copernicus explained the movements of the planets by postulating that
they moved around the sun rather than the earth, or when Darwin intro-
duced his ideas about the origin of species, they were doing more than just
building on past discoveries, or explaining new experimental data. A truly
profound scientific breakthrough, Kuhn (1996, 7) notes, “is seldom or
never just an increment to what is already known. Its assimilation requires
the reconstruction of prior theory and the re-evaluation of prior fact, an
intrinsically revolutionary process that is seldom completed by a single
man and never overnight.”

Kuhn referred to these revolutionary processes in science as “paradigm
shifts,” a term that has now entered the language to describe any profound
change in our frame of reference.

Paradigm shifts occur from time to time in business as well as in science.
And as with scientific revolutions, they are often hard fought, and the ideas
underlying them not widely accepted until long after they were first intro-
duced. What’s more, they often have implications that go far beyond the
insights of their creators.

One such paradigm shift occurred with the introduction of the stan-
dardized architecture of the IBM personal computer in 1981. In a huge
departure from previous industry practice, IBM chose to build its computer
from off-the-shelf components, and to open up its design for cloning by
other manufacturers. As a result, the IBM personal computer architecture
became the standard, over time displacing not only other personal com-
puter designs, but, over the next two decades, also minicomputers and
mainframes.

However, the executives at IBM failed to understand the full conse-
quences of their decision. At the time, IBM’s market share in computers
far exceeded Microsoft’s dominance of the desktop operating system
market today. Software was a small part of the computer industry, a nec-
essary part of an integrated computer, often bundled rather than sold sep-
arately. What independent software companies did exist were clearly
satellite to their chosen hardware platform. So when it came time to
provide an operating system for the new machine, IBM decided to license
it from a small company called Microsoft, giving away the right to resell
the software to the small part of the market that IBM did not control. As
cloned personal computers were built by thousands of manufacturers large
and small, IBM lost its leadership in the new market. Software became the
new sun that the industry revolved around; Microsoft, not IBM, became
the most important company in the computer industry.

But that’s not the only lesson from this story. In the initial competition
for leadership of the personal computer market, companies vied to
“enhance” the personal computer standard, adding support for new
peripherals, faster buses, and other proprietary technical innovations.
Their executives, trained in the previous, hardware-dominated computer
industry, acted on the lessons of the old paradigm.

The most intransigent, such as Digital’s Ken Olson, derided the PC as a
toy, and refused to enter the market until too late. But even pioneers like
Compaq, whose initial success was driven by the introduction of “lug-
gable” computers, the ancestor of today’s laptop, were ultimately misled
by old lessons that no longer applied in the new paradigm. It took an out-
sider, Michael Dell, who began his company selling mail order PCs from a
college dorm room, to realize that a standardized PC was a commodity,
and that marketplace advantage came not from building a better PC, but
from building one that was good enough, lowering the cost of production
by embracing standards, and seeking advantage in areas such as market-
ing, distribution, and logistics. In the end, it was Dell, not IBM or Compaq,
that became the largest PC hardware vendor.

Meanwhile, Intel, another company that made a bold bet on the new
commodity platform, abandoned its memory chip business and made a
commitment to be the more complex brains of the new design. The fact
that most of the PCs built today bear an “Intel Inside” logo reminds us
that even within commodity architectures, there are opportunities for pro-
prietary advantage.

What does all this have to do with open source software? you might ask.
My premise is that free and open source developers are in much the same

position today that IBM was in 1981 when it changed the rules of the com-

462 Tim O’Reilly

puter industry, but failed to understand the consequences of the change,
allowing others to reap the benefits. Most existing proprietary software
vendors are no better off, playing by the old rules while the new rules are
reshaping the industry around them.

I have a simple test that I use in my talks to see whether my audience
of computer industry professionals is thinking with the old paradigm or
the new. “How many of you use Linux?” I ask. Depending on the venue,
20 to 80 percent of the audience might raise their hands. “How many of
you use Google?” Every hand in the room goes up. And the light begins
to dawn. Every one of them uses Google’s massive complex of 100,000
Linux servers, but they were blinded to the answer by a mindset in which
“the software you use” is defined as the software running on the computer
in front of you. Most of the “killer apps” of the Internet—applications used
by hundreds of millions of people—run on Linux or FreeBSD. But the oper-
ating system, as formerly defined, is to these applications only a compo-
nent of a larger system. Their true platform is the Internet.

It is in studying these next-generation applications that we can begin to
understand the true long-term significance of the open source paradigm
shift.

If open source pioneers are to benefit from the revolution we’ve
unleashed, we must look through the foreground elements of the free and
open source movements, and understand more deeply both the causes and
consequences of the revolution.

Artificial intelligence pioneer Ray Kurzweil1 once said, “I’m an inventor.
I became interested in long-term trends because an invention has to make
sense in the world in which it is finished, not the world in which it is
started.”

I find it useful to see open source as an expression of three deep, long-
term trends:

� The commoditization of software
� Network-enabled collaboration
� Software customizability (software as a service)

Long-term trends like these “three Cs,” rather than the Free Software Man-
ifesto or the Open Source Definition, should be the lens through which
we understand the changes that are being unleashed.

Software as Commodity

In his essay “Some Implications of Software Commodification,” Dave Stutz
writes:

Open Source Paradigm Shift 463

The word commodity is used today to represent fodder for industrial processes: things

or substances that are found to be valuable as basic building blocks for many dif-

ferent purposes. Because of their very general value, they are typically used in large

quantities and in many different ways. Commodities are always sourced by more

than one producer, and consumers may substitute one producer’s product for

another’s with impunity. Because commodities are fungible in this way, they are

defined by uniform quality standards to which they must conform. These quality

standards help to avoid adulteration, and also facilitate quick and easy valuation,

which in turn fosters productivity gains. (Stutz 2004b)

Software commoditization has been driven by standards, and in partic-
ular by the rise of communications-oriented systems such as the Internet,
which depend on shared protocols, and define the interfaces and datatypes
shared between cooperating components rather than the internals of those
components. Such systems necessarily consist of replaceable parts. A Web
server such as Apache or Microsoft’s IIS, or browsers such as Internet
Explorer, Netscape Navigator, or Mozilla, are all easily swappable, because
in order to function, they must implement the HTTP protocol and the
HTML data format. Sendmail can be replaced by Exim or Postfix or
Microsoft Exchange, because all must support e-mail exchange protocols
such as SMTP, POP, and IMAP. Microsoft Outlook can easily be replaced by
Eudora, or pine, or Mozilla mail, or a Web mail client such as Yahoo! Mail
for the same reason.

(In this regard, it’s worth noting that Unix, the system on which Linux
is based, also has a communications-centric architecture. In The Unix Pro-
gramming Environment, Kernighan and Pike (1984) eloquently describe how
Unix programs should be written as small pieces designed to cooperate in
“pipelines,” reading and writing ASCII files rather than proprietary data
formats. Eric Raymond (2003b) gives a contemporary expression of this
theme in his book The Art of Unix Programming.)

Note that in a communications-centric environment with standard pro-
tocols, both proprietary and open source software become commodities.
Microsoft’s Internet Explorer Web browser is just as much a commodity as
the open source Apache Web server, because both are constrained by the
open standards of the Web. (If Microsoft had managed to gain dominant
market share at both ends of the protocol pipeline between Web browser
and server, it would be another matter!2 This example makes clear one of
the important roles that open source does play in “keeping standards
honest.” This role is being recognized by organizations like the W3C,
which are increasingly reluctant to endorse standards that have only pro-
prietary or patent-encumbered implementations.

464 Tim O’Reilly

What’s more, even software that starts out proprietary eventually
becomes standardized and ultimately commodified. Dave Stutz eloquently
describes this process:

It occurs through a hardening of the external shell presented by the platform over

time. As a platform succeeds in the marketplace, its APIs, UI, feature-set, file formats,

and customization interfaces ossify and become more and more difficult to change.

(They may, in fact, ossify so far as to literally harden into hardware appliances!) The

process of ossification makes successful platforms easy targets for cloners, and

cloning is what spells the beginning of the end for platform profit margins. (Stutz

2004a)

Consistent with this view, the cloning of Microsoft’s Windows and Office
franchises has been a major objective of the free and open source com-
munities. In the past, Microsoft has been successful at rebuffing cloning
attempts by continually revising APIs and file formats, but the writing is
on the wall. Ubiquity drives standardization, and gratuitous innovation in
defense of monopoly is rejected by users.

What are some of the implications of software commoditization? One
might be tempted to see only the devaluation of something that was once
a locus of enormous value. Thus, Red Hat founder Bob Young once
remarked, “My goal is to shrink the size of the operating system market.”
(Red Hat however aimed to own a large part of that smaller market!)
Defenders of the status quo, such as Microsoft VP Jim Allchin, have made
statements that open source is an intellectual property destroyer, and paint
a bleak picture in which a great industry is destroyed, with nothing to take
its place.

On the surface, Allchin appears to be right. Linux now generates tens of
billions of dollars in server hardware–related revenue, with the software
revenues merely a rounding error. Despite Linux’s emerging dominance in
the server market, Red Hat, the largest Linux distribution company, has
annual revenues of only $126 million, versus Microsoft’s $32 billion. A
huge amount of software value appears to have vaporized.

But is it value or overhead? Open source advocates like to say they’re not
destroying actual value, but rather squeezing inefficiencies out of the
system. When competition drives down prices, efficiency and average
wealth levels go up. Firms unable to adapt to the new price levels undergo
what the economist E.F. Schumpeter called “creative destruction,” but what
was “lost” returns manyfold as higher productivity and new opportunities.

Microsoft benefited, along with consumers, from the last round of cre-
ative destruction as PC hardware was commoditized. This time around,
Microsoft sees the commoditization of operating systems, databases, Web

Open Source Paradigm Shift 465

servers and browsers, and related software as destructive to its core busi-
ness. But that destruction has created the opportunity for the killer appli-
cations of the Internet era. Yahoo!, Google, Amazon, eBay—to mention
only a few—are the beneficiaries.

And so I prefer to take the view of Clayton Christensen,3 the author of
The Innovator’s Dilemma and The Innovator’s Solution. In a recent article, he
articulates “the law of conservation of attractive profits” as follows: “When
attractive profits disappear at one stage in the value chain because a
product becomes modular and commoditized, the opportunity to earn
attractive profits with proprietary products will usually emerge at an adja-
cent stage” (Christensen 2004, 17).

We see Christensen’s thesis clearly at work in the paradigm shifts I’m
discussing here. Just as IBM’s commoditization of the basic design of the
personal computer led to opportunities for attractive profits “up the stack”
in software, new fortunes are being made up the stack from the commod-
ity open source software that underlies the internet, in a new class of pro-
prietary applications that I have elsewhere referred to as “infoware.”4

Sites such as Google, Amazon, and Salesforce.com provide the most
serious challenge to the traditional understanding of free and open source
software. Here are applications built on top of Linux, but they are fiercely
proprietary. What’s more, even when using and modifying software dis-
tributed under the most restrictive of free software licenses, the GPL, these
sites are not constrained by any of its provisions, all of which are condi-
tioned on the old paradigm. The GPL’s protections are triggered by the act
of software distribution, yet Web-based application vendors never distrib-
ute any software: it is simply performed on the Internet’s global stage,
delivered as a service rather than as a packaged software application.

But even more importantly, even if these sites gave out their source code,
users would not easily be able to create a full copy of the running appli-
cation! The application is a dynamically updated database whose utility
comes from its completeness and concurrency, and in many cases, from
the network effect of its participating users.5

And the opportunities are not merely up the stack. There are huge
proprietary opportunities hidden inside the system. Christensen notes:
“Attractive profits . . . move elsewhere in the value chain, often to subsys-
tems from which the modular product is assembled. This is because it is
improvements in the subsystems, rather than the modular product’s archi-
tecture, that drives the assembler’s ability to move upmarket towards more
attractive profit margins. Hence, the subsystems become decommoditized
and attractively profitable.” (Christensen 2004, 17).

466 Tim O’Reilly

We saw this pattern in the PC market with most PCs now bearing the
brand “Intel Inside”; the Internet could just as easily be branded “Cisco
Inside.” But these “Intel Inside” business opportunities are not always
obvious, nor are they necessarily in proprietary hardware or software.
The open source BIND (Berkeley Internet Name Daemon) package
used to run the Domain Name System (DNS) provides an important
demonstration.

The business model for most of the Internet’s commodity software
turned out to be not selling that software (despite shrinkwrapped offerings
from vendors such as NetManage and Spry, now long gone), but services
based on that software. Most of those businesses—the Internet Service
Providers (ISPs), who essentially resell access to the TCP/IP protocol suite
and to e-mail and Web servers—turned out to be low-margin businesses.
There was one notable exception.

BIND is probably the single most mission-critical program on the Inter-
net, yet its maintainer has scraped by for the past two decades on dona-
tions and consulting fees. But meanwhile, domain name registration—an
information service based on the software—became a business generating
hundreds of millions of dollars a year, a virtual monopoly for Network
Solutions, which was handed the business on government contract before
anyone realized just how valuable it would be. The Intel Inside opportu-
nity of the DNS was not a software opportunity at all, but the service of
managing the namespace used by the software. By a historical accident,
the business model became separated from the software.

That services based on software would be a dominant business model for
open source software was recognized in The Cathedral and the Bazaar, Eric
Raymond’s (2001) seminal work on the movement. But in practice, most
early open source entrepreneurs focused on services associated with the
maintenance and support of the software, rather than true software as a
service. (That is to say, software as a service is not service in support of
software, but software in support of user-facing services!)

Dell gives us a final lesson for today’s software industry. Much as the
commoditization of PC hardware drove down IBM’s outsize margins but
vastly increased the size of the market, creating enormous value for users,
and vast opportunities for a new ecosystem of computer manufacturers for
whom the lower margins of the PC still made business sense, the com-
moditization of software will actually expand the software market. And as
Christensen (2004, 17) notes, in this type of market, the drivers of success
“become speed to market and the ability responsively and conveniently to
give customers exactly what they need, when they need it.”

Open Source Paradigm Shift 467

Following this logic, I believe that the process of building custom dis-
tributions will emerge as one of the key competitive differentiators among
Linux vendors. Much as a Dell must be an arbitrageur of the various con-
tract manufacturers vying to produce fungible components at the lowest
price, a Linux vendor will need to manage the ever-changing constellation
of software suppliers whose asynchronous product releases provide the raw
materials for Linux distributions. Companies like Debian founder Ian
Murdock’s Progeny Systems already see this as the heart of their business,
but even old-line Linux vendors like SuSe and new entrants like Sun tout
their release engineering expertise as a competitive advantage.6

But even the most successful of these Linux distribution vendors will
never achieve the revenues or profitability of today’s software giants like
Microsoft or Oracle, unless they leverage some of the other lessons of
history. As demonstrated by both the PC hardware market and the ISP
industry (which as noted previously is a service business built on the com-
modity protocols and applications of the Internet), commodity businesses
are low-margin for most of the players. Unless companies find value up
the stack or through an “Intel Inside” opportunity, they must compete
only through speed and responsiveness, and that’s a challenging way to
maintain a pricing advantage in a commodity market.

Early observers of the commodity nature of Linux, such as Red Hat’s
founder Bob Young, believed that advantage was to be found in building
a strong brand.7 That’s certainly necessary, but it’s not sufficient. It’s even
possible that contract manufacturers such as Flextronix, which work
behind the scenes as industry suppliers rather than branded customer-
facing entities, may provide a better analogy than Dell for some Linux
vendors.

In conclusion, software itself is no longer the primary locus of value in
the computer industry. The commoditization of software drives value to
services enabled by that software. New business models are required.

Network-Enabled Collaboration

To understand the nature of competitive advantage in the new paradigm,
we should look not to Linux, but to the Internet, which has already shown
signs of how the open source story will play out.

The most common version of the history of free software begins with
Richard Stallman’s ethically motivated 1984 revolt against proprietary soft-
ware. It is an appealing story centered on a charismatic figure, and leads
straight into a narrative in which the license he wrote—the GPL—is the

468 Tim O’Reilly

centerpiece. But like most open source advocates, who tell a broader story
about building better software through transparency and code sharing, I
prefer to start the history with the style of software development that was
normal in the early computer industry and academia. Because software was
not seen as the primary source of value, source code was freely shared
throughout the early computer industry.

The Unix software tradition provides a good example. Unix was
developed at Bell Labs, and was shared freely with university software
researchers, who contributed many of the utilities and features we take for
granted today. The fact that Unix was provided under a license that later
allowed ATT to shut down the party when it decided it wanted to com-
mecialize Unix, leading ultimately to the rise of BSD Unix and Linux as
free alternatives, should not blind us to the fact that the early, collabora-
tive development preceded the adoption of an open source licensing
model. Open source licensing began as an attempt to preserve a culture of
sharing, and only later led to an expanded awareness of the value of that
sharing.

For the roots of open source in the Unix community, you can look to
the research orientation of many of the original participants. As Bill Joy
noted in his keynote at the O’Reilly Open Source Convention in 1999, in
science, you share your data so other people can reproduce your results.
And at Berkeley, he said, we thought of ourselves as computer scientists.8

But perhaps even more important was the fragmented nature of the early
Unix hardware market. With hundreds of competing computer architec-
tures, the only way to distribute software was as source! No one had access
to all the machines to produce the necessary binaries. (This demonstrates
the aptness of another of Christensen’s “laws,” the law of conservation of
modularity. Because PC hardware was standardized and modular, it was
possible to concentrate value and uniqueness in software. But because Unix
hardware was unique and proprietary, software had to be made more open
and modular.)

This software source code exchange culture grew from its research begin-
nings, but it became the hallmark of a large segment of the software indus-
try because of the rise of computer networking.

Much of the role of open source in the development of the Internet is
well known: the most widely used TCP/IP protocol implementation was
developed as part of Berkeley networking; BIND runs the DNS, without
which none of the Web sites we depend on would be reachable; sendmail is
the heart of the Internet e-mail backbone; Apache is the dominant Web
server; Perl is the dominant language for creating dynamic sites, and so on.

Open Source Paradigm Shift 469

Less often considered is the role of Usenet in mothering the Net we now
know. Much of what drove public adoption of the Internet was in fact
Usenet, that vast distributed bulletin board. You “signed up” for Usenet by
finding a neighbor willing to give you a newsfeed. This was a true collab-
orative network, where mail and news were relayed from one cooperating
site to another, often taking days to travel from one end of the Net
to another. Hub sites formed an ad hoc backbone, but everything was
voluntary.

Rick Adams, who created UUnet, the first major commercial ISP, was a
free software author (though he never subscribed to any of the free soft-
ware ideals—it was simply an expedient way to distribute software he
wanted to use). He was the author of B News (at the time the dominant
Usenet news server) as well as SLIP (Serial Line IP), the first implementa-
tion of TCP/IP for dialup lines. But more importantly for the history of the
Net, Rick was also the hostmaster of the world’s largest Usenet hub. He
realized that the voluntary Usenet was becoming unworkable, and that
people would pay for reliable, well-connected access. UUnet started out as
a nonprofit, and for several years, much more of its business was based on
the earlier UUCP (Unix-Unix Copy Protocol) dialup network than on
TCP/IP. As the Internet caught on, UUnet and others liked it helped bring
the Internet to the masses. But at the end of the day, the commercial Inter-
net industry started out of a need to provide infrastructure for the com-
pletely collaborative UUCPnet and Usenet.

The UUCPnet and Usenet were used for e-mail (the first killer app of the
Internet), but also for software distribution and collaborative tech support.
When Larry Wall (later famous as the author of Perl) introduced the patch
program in 1984, the ponderous process of sending around nine track tapes
of source code was replaced by the transmission of “patches”—editing
scripts that update existing source files. Add in Richard Stallman’s GNU C
compiler (gcc), and early source code control systems like RCS (eventually
replaced by CVS and now Subversion), and you had a situation where
anyone could share and update free software. Early Usenet was as much a
“Napster” for shared software as it was a place for conversation.

The mechanisms that the early developers used to spread and support
their work became the basis for a cultural phenomenon that reached far
beyond the tech sector. The heart of that phenomenon was the use of wide-
area networking technology to connect people around interests, rather
than through geographical location or company affiliation. This was the
beginning of a massive cultural shift that we’re still seeing today. This cul-
tural shift may have had its first flowering with open source software, but

470 Tim O’Reilly

it is not intrinsically tied to the use of free and open source licenses and
philosophies.

In 1999, together with with Brian Behlendorf of the Apache project,
O’Reilly founded a company called Collab.Net to commercialize not the
Apache product but the Apache process. Unlike many other OSS projects,
Apache wasn’t founded by a single visionary developer but by a group of
users who’d been abandoned by their original “vendor” (NCSA) and who
agreed to work together to maintain a tool they depended on. Apache gives
us lessons about intentional wide-area collaborative software development
that can be applied even by companies that haven’t fully embraced open
source licensing practices. For example, it is possible to apply open source
collaborative principles inside a large company, even without the inten-
tion to release the resulting software to the outside world.

While Collab.Net is best known for hosting high-profile corporate-
sponsored open source projects like OpenOffice.Org, its largest customer is
actually HP’s printer division, where Collab’s SourceCast platform is used
to help more than 3,000 internal developers share their code within the
corporate firewall. Other customers use open source–inspired develop-
ment practices to share code with their customers or business partners,
or to manage distributed worldwide development teams.

But an even more compelling story comes from that archetype of pro-
prietary software, Microsoft. Far too few people know the story of the
origin of ASP.Net. As told to me by its creators, Mark Anders and Scott
Guthrie, the two of them wanted to re-engineer Microsoft’s ASP product
to make it XML-aware. They were told that doing so would break back-
ward compatibility, and the decision was made to stick with the old archi-
tecture. But when Anders and Guthrie had a month between projects, they
hacked up their vision anyway, just to see where it would go. Others within
Microsoft heard about their work, found it useful, and adopted pieces of
it. Some six or nine months later, they had a call from Bill Gates: “I’d like
to see your project.”

In short, one of Microsoft’s flagship products was born as an internal
“code fork,” the result of two developers “scratching their own itch,” and
spread within Microsoft in much the same way as open source projects
spread on the open Internet. It appears that open source is the “natural
language” of a networked community. Given enough developers and a
network to connect them, open source–style development behavior
emerges.

If you take the position that open source licensing is a means of encour-
aging Internet-enabled collaboration, and focus on the end rather than the

Open Source Paradigm Shift 471

means, you’ll open a much larger tent. You’ll see the threads that tie
together not just traditional open source projects, but also collaborative
“computing grid” projects like SETI@home, user reviews on Amazon.com,
technologies like collaborative filtering, new ideas about marketing such
as those expressed in the Cluetrain Manifesto, weblogs, and the way that
Internet message boards can now move the stock market. What started out
as a software development methodology is increasingly becoming a facet
of every field, as network-enabled conversations become a principal carrier
of new ideas.

I’m particularly struck by how collaboration is central to the success and
differentiation of the leading Internet applications. eBay is an obvious
example, almost the definition of a “network effects” business, in which
competitive advantage is gained from the critical mass of buyers and
sellers. New entrants into the auction business have a hard time compet-
ing, because there is no reason for either buyers or sellers to go to a second-
tier player.

Amazon.com is perhaps even more interesting. Unlike eBay, whose con-
stellation of products is provided by its users, and changes dynamically
day to day, products identical to those Amazon sells are available from
other vendors. Yet Amazon seems to enjoy an order-of-magnitude advan-
tage over those other vendors. Why? Perhaps it is merely better execution,
better pricing, better service, better branding. But one clear differentiator
is the superior way that Amazon has leveraged its user community.

In my talks, I give a simple demonstration. I do a search for products in
one of my publishing areas, JavaScript. On Amazon, the search produces
a complex page with four main areas. On the top is a block showing the
three most popular products. Down below is a longer search listing that
allows the customer to list products by criteria such as bestselling, highest-
rated, price, or alphabetically. On the right and the left are user-generated
“Listmania” lists. (These lists allow customers to share their own recom-
mendations for other items related to a chosen subject.)

The section labeled “most popular” might not jump out at first. But as
a vendor who sells to Amazon.com, I know that it is the result of a
complex, proprietary algorithm that combines not just sales but also
the number and quality of user reviews, user recommendations for
alternative products, links from Listmania lists, “also bought” associations,
and all the other things that Amazon.com refers to as the “flow” around
products.

The particular search that I like to demonstrate is usually topped by my
own JavaScript: The Definitive Guide. As of this writing, the book has 196

472 Tim O’Reilly

reviews, averaging 41/2 stars. Those reviews are among the more than ten
million user reviews contributed by Amazon.com customers.

Now contrast the #2 player in online books, barnesandnoble.com. The
top result is a book published by Barnes & Noble itself, and there is no evi-
dence of user-supplied content. JavaScript: The Definitive Guide has only 18
comments, the order-of-magnitude difference in user participation closely
mirroring the order-of-magnitude difference in sales.

Amazon.com doesn’t have a natural network-effect advantage like eBay,
but they’ve built one by designing their site for user participation. Every-
thing from user reviews, alternative product recommendations, Listmania,
and the Associates program (which allows users to earn commissions for
recommending books) encourages users to collaborate in enhancing the
site. Amazon Web Services, introduced in 2001, take the story even further,
allowing users to build alternate interfaces and specialized shopping expe-
riences (as well as other unexpected applications), using Amazon’s data and
commerce engine as a back end.

Amazon’s distance from competitors, and the security it enjoys as a
market leader, is driven by the value added by its users. If, as Eric Raymond
(2001) said, one of the secrets of open source is “treating your users as co-
developers,” Amazon has learned this secret. But note that it’s completely
independent of open source licensing practices! We start to see that what
has been presented as a rigidly constrained model for open source may
consist of a bundle of competencies, not all of which will always be found
together.

Google makes a more subtle case for the network effect story. Google’s
initial innovation was the PageRank algorithm, which leverages the col-
lective preferences of Web users, expressed by their hyperlinks to sites, to
produce better search results. In Google’s case, the user participation is
extrinsic to the company and its product, and so can be copied by com-
petitors. If this analysis is correct, Google’s long-term success will depend
on finding additional ways to leverage user-created value as a key part of
their offering. Services such as Orkut and Gmail suggest that this lesson is
not lost on them.

Now consider a counter-example. MapQuest is another pioneer who
created an innovative type of Web application that almost every Internet
user relies on. Yet the market is shared fairly evenly between MapQuest
(now owned by AOL), maps.yahoo.com, and maps.msn.com (powered by
MapPoint). All three provide a commodity business powered by standard-
ized software and databases. None of them have made a concerted effort
to leverage user-supplied content, or engage their users in building out the

Open Source Paradigm Shift 473

application. (Note also that all three are enabling an “Intel Inside”–style
opportunity for data suppliers such as Navteq, now planning a multibil-
lion-dollar IPO!)

The Architecture of Participation
I’ve come to use the term “the architecture of participation” to describe
the nature of systems that are designed for user contribution. Larry Lessig’s
(2000) book Code and Other Laws of Cyberspace, which he characterizes as
an extended meditation on Mitch Kapor’s maxim that “architecture is pol-
itics,” made the case that we need to pay attention to the architecture of
systems if we want to understand their effects.

I immediately thought of Kernighan and Pike’s (1984) description of the
Unix software tools philosophy. I also recalled an unpublished portion of
the interview we did with Linus Torvalds to create his essay for the book
Open Sources (DiBona et al. 1999). Linus too expressed a sense that archi-
tecture may be important than source code. “I couldn’t do what I did with
Linux for Windows, even if I had the source code. The architecture just
wouldn’t support it.” Too much of the Windows source code consists of
interdependent, tightly coupled layers for a single developer to drop in a
replacement module.

And of course the Internet and the World Wide Web have this partici-
patory architecture in spades. As outlined earlier in the section on software
commoditization, any system designed around communications protocols
is intrinsically designed for participation. Anyone can create a participat-
ing, first-class component.

In addition, the IETF, the Internet standards body has a great many sim-
ilarities with an open source software project. The only substantial differ-
ence is that the IETF’s output is a standards document rather than a code
module. Especially in the early years, anyone could participate, simply by
joining a mailing list and having something to say, or by showing up to
one of the three annual face-to-face meetings. Standards were decided on
by participating individuals, irrespective of their company affiliations. The
very name for proposed Internet standards, RFCs (Request for Comments)
reflects the participatory design of the Net. Though commercial participa-
tion was welcomed and encouraged, companies (like individuals) were
expected to compete on the basis of their ideas and implementations, not
their money or disproportional representation. The IETF approach is where
open source and open standards meet.

And while there are successful open source projects like Sendmail that
are largely the creation of a single individual, and have a monolithic archi-

474 Tim O’Reilly

tecture, those that have built large development communities have done
so because they have a modular architecture that allows easy participation
by independent or loosely coordinated developers. The use of Perl, for
example, exploded along with CPAN, the Comprehensive Perl Archive
Network, and Perl’s module system, which allowed anyone to enhance the
language with specialized functions and make them available to other
users.

The Web, however, took the idea of participation to a new level, because
it opened that participation not just to software developers but to all users
of the system.

It has always baffled and disappointed me that the open source com-
munity has not embraced the Web as one of its greatest success stories.
Tim Berners-Lee’s original Web implementation was not just open source,
it was public domain. NCSA’s Web server and Mosaic browser were not
technically open source, but their source was freely available. While the
move of the NCSA team to Netscape sought to take key parts of the Web
infrastructure to the proprietary side, and the Microsoft-Netscape battles
made it appear that the Web was primarily a proprietary software battle-
ground, we should know better. Apache, the phoenix that grew from the
NCSA server, kept the open vision alive, keeping the standards honest, and
not succumbing to proprietary embrace and extend strategies.

But even more significantly, HTML, the language of Web pages, opened
participation to ordinary users, not just software developers. The “View
source” menu item migrated from Tim Berners-Lee’s original browser, to
Mosaic, and then on to Netscape Navigator and even Microsoft’s Internet
Explorer. Though no one thinks of HTML as an open source technology,
its openness was absolutely key to the explosive spread of the Web. Barri-
ers to entry for “amateurs” were low, because anyone could look “over the
shoulder” of anyone else producing a Web page. Dynamic content created
with interpreted languages continued the trend toward transparency.

And more germane to my argument here, the fundamental architecture
of hyperlinking ensures that the value of the Web is created by its users.
In this context, it’s worth noting an observation originally made by Clay
Shirky (2001) in a talk at my 2001 P2P and Web Services Conference (now
renamed the Emerging Technology Conference), entitled “Listening to
Napster.” There are three ways to build a large database, said Clay. The first,
demonstrated by Yahoo!, is to pay people to do it. The second, inspired by
lessons from the open source community, is to get volunteers to perform
the same task. The Open Directory Project, an open source Yahoo! com-
petitor is the result. (Wikipedia provides another example.) But Napster

Open Source Paradigm Shift 475

demonstrates a third way. Because Napster set its defaults to automatically
share any music that was downloaded, every user automatically helped to
build the value of the shared database.

This architectural insight may actually be more central to the success of
open source than the more frequently cited appeal to volunteerism. The
architecture of Linux, the Internet, and the World Wide Web are such that
users pursuing their own “selfish” interests build collective value as an
automatic byproduct. In other words, these technologies demonstrate
some of the same network effect as eBay and Napster, simply through the
way that they have been designed.

These projects can be seen to have a natural architecture of participation.
But as Amazon demonstrates, by consistent effort (as well as economic
incentives such as the Associates program), it is possible to overlay such an
architecture on a system that would not normally seem to possess it.

Customizability and Software as Service

The last of my three Cs, customizability, is an essential concomitant of
software as a service. It’s especially important to highlight this aspect
because it illustrates just why dynamically typed languages like Perl,
Python, and PHP, so often denigrated by old-paradigm software develop-
ers as mere “scripting languages,” are so important on today’s software
scene.

As I wrote in my essay “Hardware, Software and Infoware” (O’Reilly
1997, 192–193):

If you look at a large web site like Yahoo!, you’ll see that behind the scenes, an army

of administrators and programmers are continually rebuilding the product. Dynamic

content isn’t just automatically generated, it is also often hand-tailored, typically

using an array of quick and dirty scripting tools.

“We don’t create content at Yahoo! We aggregate it,” says Jeffrey Friedl, author of

the book Mastering Regular Expressions and a full-time Perl programmer at Yahoo.

“We have feeds from thousands of sources, each with its own format. We do massive

amounts of ‘feed processing’ to clean this stuff up or to find out where to put it

on Yahoo!.” For example, to link appropriate news stories to tickers at

finance.yahoo.com, Friedl needed to write a “name recognition” program able to

search for more than 15,000 company names. Perl’s ability to analyze free-form text

with powerful regular expressions was what made that possible.

Perl has been referred to as the “duct tape of the Internet,” and like duct
tape, dynamic languages like Perl are important to Web sites like Yahoo!

476 Tim O’Reilly

and Amazon for the same reason that duct tape is important not just to
heating system repairmen but to anyone who wants to hold together a
rapidly changing installation. Go to any lecture or stage play, and you’ll
see microphone cords and other wiring held down by duct tape.

We’re used to thinking of software as an artifact rather than a process.
And to be sure, even in the new paradigm, there are software artifacts, pro-
grams, and commodity components that must be engineered to exacting
specifications because they will be used again and again. But it is in the
area of software that is not commoditized, the glue that ties together
components, the scripts for managing data and machines, and all the areas
that need frequent change or rapid prototyping, that dynamic languages
shine.

Sites like Google, Amazon, or eBay—especially those reflecting the
dynamic of user participation—are not just products, they are processes. I
like to tell people the story of the Mechanical Turk, a 1770 hoax that pre-
tended to be a mechanical chess-playing machine. The secret, of course,
was that a man was hidden inside. The Turk actually played a small role
in the history of computing. When Charles Babbage played against the
Turk in 1820 (and lost), he saw through the hoax, but was moved to
wonder whether a true computing machine would be possible.

Now, in an ironic circle, applications once more have people hidden
inside them. Take a copy of Microsoft Word and a compatible computer,
and it will still run ten years from now. But without the constant crawls
to keep the search engine fresh, the constant product updates at an
Amazon or eBay, the administrators who keep it all running, the editors
and designers who integrate vendor- and user-supplied content into the
interface, and in the case of some sites, even the warehouse staff who
deliver the products, the Internet-era application no longer performs its
function.

This is truly not the software business as it was even a decade ago. Of
course, there have always been enterprise software businesses with this
characteristic. (American Airlines’ Sabre reservations system is an obvious
example.) But only now have they become the dominant paradigm for new
computer-related businesses.

The first generation of any new technology is typically seen as an exten-
sion to the previous generations. And so, through the 1990’s, most people
experienced the Internet as an extension or add-on to the personal com-
puter. E-mail and Web browsing were powerful add-ons, to be sure, and
they gave added impetus to a personal computer industry that was running
out of steam.

Open Source Paradigm Shift 477

(Open source advocates can take ironic note of the fact that many of the
most important features of Microsoft’s new operating system releases since
Windows 95 have been designed to emulate Internet functionality origi-
nally created by open source developers.)

But now, we’re starting to see the shape of a very different future. Napster
brought us peer-to-peer file sharing, SETI@home introduced millions of
people to the idea of distributed computation, and now Web services are
starting to make even huge database-backed sites like Amazon or Google
appear to act like components of an even larger system. Vendors such as
IBM and HP bandy about terms like “computing on demand” and “per-
vasive computing.”

The boundaries between cell phones, wirelessly connected laptops, and
even consumer devices like the iPod or TiVO, are all blurring. Each now
gets a large part of its value from software that resides elsewhere. Dave
Stutz (2003) characterizes this as “software above the level of a single
device” (http://www.synthesist.net/writing/onleavingms.html).9

Building the Internet Operating System

I like to say that we’re entering the stage where we are going to treat the
Internet as if it were a single virtual computer. To do that, we’ll need to
create an Internet operating system.

The large question before us is this: what kind of operating system is it
going to be? The lesson of Microsoft is that if you leverage insight into a
new paradigm, you will find the secret that will give you control over the
industry, the “one ring to rule them all,” so to speak. Contender after con-
tender has set out to dethrone Microsoft and take that ring from them,
only to fail. But the lesson of open source and the Internet is that we can
build an operating system that is designed from the ground up as “small
pieces loosely joined,” with an architecture that makes it easy for anyone
to participate in building the value of the system.

The values of the free and open source community are an important part
of its paradigm. Just as the Copernican revolution was part of a broader
social revolution that turned society away from hierarchy and received
knowledge, and instead sparked a spirit of inquiry and knowledge sharing,
open source is part of a communications revolution designed to maximize
the free sharing of ideas expressed in code.

But free software advocates go too far when they eschew any limits on
sharing and define the movement by adherence to a restrictive set of soft-
ware licensing practices. The open source movement has made a concerted

478 Tim O’Reilly

effort to be more inclusive. Eric Raymond10 describes the Open Source Def-
inition as a “provocation to thought,” a “social contract . . . and an invi-
tation to join the network of those who adhere to it.” But even though
the open source movement is much more business-friendly and supports
the right of developers to choose nonfree licenses, it still uses the presence
of software licenses that enforce sharing as its litmus test.

But the lessons of previous paradigm shifts show us a more subtle and
powerful story than one that merely pits a gift culture against a monetary
culture, and a community of sharers versus those who choose not to par-
ticipate. Instead, we see a dynamic migration of value, in which things
that were once kept for private advantage are now shared freely, and things
that were once thought incidental become the locus of enormous value.
It’s easy for free and open source advocates to see this dynamic as a fall
from grace, a hoarding of value that should be shared with all. But a his-
torical view tells us that the commoditization of older technologies and
the crystallization of value in new technologies is part of a process that
advances the industry and creates more value for all. What is essential is
to find a balance, in which we as an industry create more value than we
capture as individual participants, enriching the commons that allows for
further development by others.

I cannot say where things are going to end. But as Alan Kay11 once said,
“The best way to predict the future is to invent it.” Where we go next is
up to all of us.

Conclusion

The Open Source Definition and works such as The Cathedral and the Bazaar
(Raymond 2001) tried to codify the fundamental principles of open source.
But as Kuhn notes, speaking of scientific pioneers who opened new fields
of study, “Their achievement was sufficiently unprecedented to attract an
enduring group of adherents away from competing modes of scientific
activity. Simultaneously, it was sufficiently open-ended to leave all sorts of
problems for the redefined group of practitioners to resolve. Achievements
that share these two characteristics, I shall refer to as ‘paradigms’” (Kuhn
1996, 10).

In short, if it is sufficiently robust an innovation to qualify as a new par-
adigm, the open source story is far from over, and its lessons far from com-
pletely understood. Rather than thinking of open source only as a set of
software licenses and associated software development practices, we do
better to think of it as a field of scientific and economic inquiry, one with

Open Source Paradigm Shift 479

many historical precedents, and part of a broader social and economic
story. We must understand the impact of such factors as standards and
their effect on commoditization, system architecture and network effects,
and the development practices associated with software as a service. We
must study these factors when they appear in proprietary software as well
as when they appear in traditional open source projects. We must under-
stand how the means by which software is deployed changes the way in
which it is created and used. We must also see how the same principles
that led to early source code sharing may affect other fields of collabora-
tive activity. Only when we stop measuring open source by what activities
are excluded from the definition and begin to study its fellow travelers on
the road to the future will we understand its true impact and be fully pre-
pared to embrace the new paradigm.

Notes

1. Speech at the Foresight Senior Associates Gathering, April 2002.

2. See http://salon.com/tech/feature/1999/11/16/microsoft_servers/print.html for

my discussion of that subject.

3. I have been talking and writing about the paradigm shift for years, but until I

heard Christensen speak at the Open Source Business Conference in March 2004, I

hadn’t heard his eloquent generalization of the economic principles at work in what

I’d been calling business paradigm shifts. I am indebted to Christensen and to Dave

Stutz, whose recent writings on software commoditization have enriched my own

views on the subject.

4. http://www.oreilly.com/catalog/opensources/book/tim.html.

5. To be sure, there would be many benefits to users were some of Google’s algo-

rithms public rather than secret, or Amazon’s One-Click available to all, but the

point remains: an instance of all of Google’s source code would not give you Google,

unless you were also able to build the capability to crawl and mirror the entire Web

in the same way that Google does.

6. Private communications, SuSe CTO Juergen Geck and Sun CTO Greg

Papadopoulos.

7. http://www.oreilly.com/catalog/opensources/book/young.html.

8. I like to say that software enables speech between humans and computers. It is

also the best way to talk about certain aspects of computer science, just as equations

are the best ways to talk about problems in physics. If you follow this line of rea-

soning, you realize that many of the arguments for free speech apply to open source

480 Tim O’Reilly

as well. How else do you tell someone how to talk with their computer other than

by sharing the code you used to do so? The benefits of open source are analogous

to the benefits brought by the free flow of ideas through other forms of informa-

tion dissemination.

9. Dave Stutz notes (in a private e-mail, 4/29/04, in response to an early draft of

this chapter), this software “includes not only what I call ‘collective software’ that

is aware of groups and individuals, but also software that is customized to its loca-

tion on the network, and also software that is customized to a device or a virtual-

ized hosting environment. These additional types of customization lead away from

shrinkwrap software that runs on a single PC or PDA/smartphone and towards per-

sonalized software that runs ‘on the network’ and is delivered via many devices

simultaneously.”

10. Private e-mail, 4/28/04, in a response to an earlier draft of this chapter.

11. Spoken in a 1971 internal Xerox planning meeting, as quoted in http://

www.lisarein.com/alankay/tour.html.

Two Case Studies of Open Source Software Development 481

Epilogue: Open Source outside the Domain of Software

Clay Shirky

The unenviable burden of providing an epilogue to Perspectives on Free and
Open Source Software is made a bit lighter by the obvious impossibility of
easy summation. The breadth and excellence of the work contained here
makes the most important point—the patterns implicit in the production
of Open Source software are more broadly applicable than many of us
believed even five years ago. Even Robert Glass, the most determined Open
Source naysayer represented here, reluctantly concludes that “[T]here is no
sign of the movement’s collapse because it is impractical.”

So the publication of this book is a marker—we have gotten to a
point where we can now take at least the basic success of the Open
Source method for granted. This is in itself a big step, since much of the
early literature concerned whether it could work at all. Since even many
of its critics now admit its practicality, one obvious set of questions is how
to make it work better, so that code produced in this way is more useful,
more easily integrated into existing systems, more user-friendly, more
secure.

These are all critical questions, of course. There are many people working
on them, and many thousands of programmers and millions of users
whose lives will be affected for the better whenever there is improvement
in those methods.

There is however a second and more abstract set of questions implicit
in the themes of this book that may be of equal importance in the long
term. Human intelligence relies on analogy (indeed, Douglas Hofstadter,
a researcher into human cognition and the author of Gödel, Escher, Bach:
An Eternal Golden Braid suggests that intelligence is the ability to analo-
gize). Now that we have identified Open Source as a pattern, and armed
with the analytical work appearing here and elsewhere, we can start
asking ourselves where that pattern might be applied outside its original
domain.

I first came to this question in a roundabout way, while I was research-
ing a seemingly unrelated issue: why it is so hard for online groups to make
decisions? The answer turns out to be multivariate, including, among other
things, a lack of perceived time pressure for groups in asynchronous com-
munication, a preference in online groups for conversation over action;
a lack of constitutional structures that make users feel bound by their
decisions, and a lack of the urgency and communal sensibility derived from
face-to-face contact. There is much more work to be done on understand-
ing both these issues and their resolution.

I noticed, though, in pursuing this question, that Open Source projects
seemed to violate the thesis. Open Source projects often have far-flung
members who are still able, despite the divisions of space and time, to make
quite effective decisions that have real-world effects.

I assumed that it would be possible to simply document and emulate
these patterns. After all, I thought, it can’t be that Open Source projects
are so different from other kinds of collaborative efforts, so I began looking
at other efforts that styled themselves on Open Source, but weren’t about
creating code.

One of the key observations in Eric Raymond’s seminal The Cathedral
and the Bazaar (2001) was that the Internet changed the way software was
written because it enabled many users to collaborate asynchronously and
over great distance. Soon after that essay moved awareness of the Open
Source pattern into the mainstream, we started to see experiments in apply-
ing that pattern to other endeavors where a distributed set of users was
invited to contribute.

Outside software production, the discipline that has probably seen the
largest number of these experiments is collaborative writing. The incred-
ible cultural coalescence stimulated by The Cathedral and the Bazaar led
to many announcements of Open Source textbooks, Open Source fiction,
and other attempts to apply the pattern to any sort of writing, on the
theory that writing code is a subset of writing, and of creative production
generally.

Sadly, my initial optimism about simple application of Open Source
methods to other endeavors turned out to be wildly overoptimistic. Efforts
to create “Open Source” writing have been characterized mainly by failure.
Many of the best-known experiments have gotten attention at launch,
when the Open Source aspect served as a novelty, rather than at comple-
tion, where the test is whether readers enjoy the resulting work. (Compare
the development of Apache or Linux, whose fame comes not from the
method of their construction but from their resulting value.)

484 Clay Shirky

The first lesson from these experiments is that writing code is different
in important ways from writing generally, and more broadly, that tools
that support one kind of creativity do not necessarily translate directly to
others. Merely announcing that a piece of writing is Open Source does
little, because the incentives of having a piece of writing available for
manipulation are different from the incentives of having a piece of useful
code available.

A good piece of writing will typically be read only once, while good code
will be reused endlessly. Good writing, at least of fiction, includes many
surprises for the reader, while good code produces few surprises for the
user. The ability to read code is much closer, as a skill, to the ability to
write code than the ability to read well is to the ability to write well.

While every writer will tell you they write for themselves, this is more a
statement of principle than an actual description of process—a piece of
writing, whether a textbook or a novel, needs an audience to succeed. A
programmer who claims to writes code for him or herself, on the other
hand, is often telling the literal truth: “This tool is for me to use. Addi-
tional users are nice, but not necessary.”

The list of differences goes on, and has turned out to be enough to upend
most attempts at Open Source production of written material. Writing code
is both a creative enterprise and a form of intellectual manufacturing. That
second characteristic alone is enough to make writing code different from
writing textbooks.

This is the flipside of Open Source software being written to scratch a
developer’s particular itch; Open Source methods work less well for the
kinds of things that people wouldn’t make for themselves. Things like
GUIs, documentation, and usability testing are historical weaknesses in
Open Source projects, and these weaknesses help explain why Open Source
methods aren’t applicable to creative works considered as a general
problem. Even when these weaknesses are overcome, the solutions typi-
cally involve a level of organization, and sometimes of funding, that takes
them out of the realm of casual production.

Open Source projects are special for several reasons. Members of the com-
munity can communicate their intentions in the relatively unambiguous
language of code. The group as a whole can see the results of a proposed
change in short cycles. Version control allows the group to reverse deci-
sions, and to test both forks of a branching decision. And, perhaps most
importantly, such groups have a nonhuman member of their community,
the compiler, who has to be consulted but who can’t be reasoned with—
proposed changes to the code either compile or don’t compile, and when

Epilogue 485

compiled can be tested. This requirement provides a degree of visible arbi-
tration absent from the problem of writing.

These advantages allow software developers to experience the future, or
at least the short-term future, rather than merely trying to predict it. This
ability in turn allows them to build a culture made on modeling multiple
futures and selecting among them, rather than arguing over some theo-
retical “best” version.

Furthermore, the overall value built up in having a collection of files that
can be compiled together into a single program creates significant value,
value that is hard to preserve outside the social context of a group of pro-
grammers. Thus the code base itself creates value in compromise.

Where the general case of applying Open Source methods to other forms
of writing has failed, though, there have been some key successes, and there
is much to learn from the why and how of such projects. Particularly
instructive in this regard is the Wikipedia project (http://wikipedia.org),
which brings many of the advantages of modeling culture into a creative
enterprise that does not rely on code.

The Wikipedia is an open encyclopedia hosted on a wiki, a collaborative
Web site that allows anyone to create and link to new pages, and to edit
existing pages. The site now hosts over 200,000 articles in various states of
completion, and many of them are good enough as reference materials to
be on the first page of a Google search for a particular topic.

There are a number of interesting particularities about the Wikipedia
project. First, any given piece of writing is part of a larger whole—the cross-
linked encyclopedia itself. Next, the wiki format provides a history of all
previous edited versions. Every entry also provides a single spot of con-
tention—there can’t be two wikipedia entries for Islam or Microsoft, so
alternate points of view have to be reflected without forking into multiple
entries. Finally, both the individual entries and the project as a whole is
tipped toward utility rather than literary value—since opposing sides of
any ideological divide will delete or alter one another’s work, only mater-
ial that both sides can agree on survives.

As a reference work, the Wikipedia creates many of the same values of
compromise created by a large code base, and the history mechanism
works as a version control system for software does, as well as forming a
defense against trivial vandalism (anyone whom comes in and deletes or
defaces a Wikipedia entry will find their vandalism undone and the pre-
vious page restored within minutes).

Open Source methods can’t be trivially applied to all areas of creative
production, but as the Wikipedia shows, when a creative endeavor takes

486 Clay Shirky

on some of the structural elements of software production, Open Source
methods can create tremendous value.

This example suggests a possible reversal of the initial question. Instead
of asking “How can we apply Open Source methods to the rest of the
world?” we can ask “How much of the rest of the world be made to work
like a software project?” This is, to me, the most interesting question, in
part because it is the most open-ended. Open Source is not pixie dust, to
be sprinkled at random, but if we concentrate on giving other sorts of work
the characteristics of software production, Open Source methods are apt
to be a much better fit.

A key element here is the introduction of a recipe, broadly conceived;
which is to say a separation between the informational and actual aspects
of production, exactly the separation that the split between source code
and compilers or interpreters achieves. For example, there are two ways
to get Anthony Bourdain’s steak au poivre—go to Bourdain’s restaurant,
or get his recipe and make it yourself. The recipe is a way of decoupling
Bourdain’s expertise from Bourdain himself. Linus Torvalds’s operating
system works on the same principle—you don’t need to know Torvalds to
get Linux. So close is the analogy between software and recipes, in fact,
that many introductory software texts use the recipe analogy to introduce
the very idea of a program.

One surprise in the modern world is the degree to which production of
all sorts is being recipe-ized. Musicians can now trade patches and plug-
ins without sharing instruments or rehearsing together, and music lovers
can trade playlists without trading songs. CAD/CAM programs and 3D
printers allow users to alter and share models of objects without having to
share the objects themselves. Eric von Hippel, who wrote the chapter in
this book on user innovation networks, is elsewhere documenting the way
these networks work outside the domain of software. He has found a
number of places where the emergence of the recipe pattern is affecting
everything from modeling kite sails in virtual wind tunnels to specifying
fragrance design by formula.

Every time some pursuit or profession gets computerized, data begins to
build up in digital form, and every time the computers holding that data
are networked, that data can be traded, rated, and collated. The Open
Source pattern, part collaborative creativity, part organizational style, and
part manufacturing process, can take hold in these environments when-
ever users can read and contribute to the recipes on their own.

This way of working—making shared production for projects rang-
ing from encyclopedia contributions to kite wing design take on the

Epilogue 487

characteristics of software production—is one way to extend the bene-
fits of Open Source to other endeavors. The work Creative Commons is
doing is another. A Creative Commons license is a way of creating a legal
framework around a document that increases communal rights, rather
than decreasing them, as typical copyrights do.

This is an almost exact analogy to the use of the GPL and other Open
Source licensing schemes, but with terms form-fit to writing text, rather
than to code. The most commonly used Creative Commons license, for
instance, allows licensed work to be excerpted but not altered, and requires
attribution for its creator. These terms would be disastrous for software, but
work well for many forms of writing, from articles and essays to stories and
poems. As with the recipe-ization of production, the Creative Commons
work has found a way to alter existing practices of creation to take advan-
tage of the work of the Open Source movement.

Of all the themes and areas of inquiry represented in Perspectives on
Free and Open Source Software, this is the one that I believe will have the
greatest effect outside the domain of software production itself. Open
Source methods can create tremendous value, but those methods are not
pixie dust to be sprinkled on random processes. Instead of assuming that
Open Source methods are broadly applicable to the rest of the world, we
can instead assume that that they are narrowly applicable, but so valuable
that it is worth transforming other kinds of work, in order to take advan-
tage of the tools and techniques pioneered here. The nature and breadth
of those transformations are going to be a big part of the next five years.

488 Clay Shirky

References

Adams, E. N. 1984. Optimising preventive maintenance of software products. IBM

Journal of Research & Development 28 (1): 2–14.

Aghion, P., and J. Tirole. 1997. Formal and real authority in organizations. Journal

of Political Economy 105: 1–29.

Allen, R. C. 1983. Collective invention. Journal of Economic Behavior and Organiza-

tion 4 (1): 1–24.

Allen, T. J., and R. Katz. 1986. The dual ladder: Motivational solution or manager-

ial delusion? R&D Management. 185–197.

Amabile, T. M. 1996. Creativity in context. Boulder, CO: Westview Press.

Anderson, R. J. 2001a. Security engineering—A guide to building dependable distrib-

uted systems. New York: Wiley.

Anderson, R. J. 2001b. Why information security is hard—An economic perspective.

Proceedings of the Seventeenth Computer Security Applications Conference. IEEE

Computer Society Press. 358–365. Available from: http://www.cl.cam.ac.uk/ftp/

users/rja14/econ.pdf.

Anderson, R. J. 2002. Security in open versus closed systems—The dance of Boltz-

mann, Coase, and Moore. Proceedings of the Open Source Software: Economics,

Law, and Policy Confocuce, June 20–21, 2002, Toulouse, France. Available from:

http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf.

Anderson, R. J., and S. J. Beduidenhoudt. 1996. On the reliability of electronic

payment systems. IEEE Transactions on Software Engineering 22 (5): 294–301. Also

available from: http://citeseer.ist.psu.edu/cache/papers/cs/623/http:zSzzSzwww.cl.

cam.ac.ukzSzftpzSzuserszSzrja14zSzmeters.pdf/anderson96reliability.pdf.

Anderson, R. J., and M. Bond. 2003. Protocol analysis, composability, and compu-

tation. Computer Systems: Papers for Roger Needham. Microsoft Research. Available

from: http://cryptome.org/pacc.htm.

Ang, M., and B. Eich. 2000. A look at the Mozilla technology and architecture. 2000

O’Reilly Open Source Convention. Available from: http://mozilla.org/docs/ora-

oss2000/arch-overview/intro.html.

Apache Group. 2004. Available from: http://dev.apache.org/guidelines.html.

Arora, A., R. Telang, and H. Xu. 2004. Timing Disclosure of Software Vulnerability

for Optimal Social Welfare. Workshop on Economics and Information Security, May

13–15, 2004, Minneapolis. Available from: http://www.dtc.umn.edu/weis2004/

agenda.html.

Baker, F. 1972. Chief programmer team management of production programming.

IBM Systems Journal 11 (1): 56–73.

Baker, M. 2000. The Mozilla project and mozilla.org. Available from: http://

www.mozilla.org/editorials/mozilla-overview.html.

Barbrook, R. 1998. The hi-tech gift economy. First Monday 3 (12). Available from:

http://www.firstmonday.org/issues/issue3_12/barbrook/.

Barnes, B. 1977. Interests and the growth of knowledge. London and Boston: Routledge

and K. Paul.

Basili V. R., and D. M. Weiss. 1984. A methodology for collecting valid software engi-

neering data. IEEE Transactions on Software Engineering 10:728–738.

Baskerville, R., J. Travis, and D. Truex. 1992. Systems without method: The impact

of new technologies on information systems development projects. In IFIP Trans-

actions A8, The Impact of Computer Supported Technologies on Information Systems

Development, ed. K. Kendall, K. Lyytinen, and J. DeGross, 241–269. Amsterdam:

North-Holland Publishing Co.

Bauer, F. L. 1972. Software engineering. Information Processing 71. Amsterdam: North-

Holland Publishing Co., p. 530.

Beck, K. 2000. Extreme Programming Explained: Embrace Change, 2nd ed. Reading, MA:

Addison-Wesley.

Benkler, Y. 2002. Coase’s penguin, or Linux and the nature of the Firm. 112 Yale

Law Journal.

Bergquist, M., and J. Ljungberg. 2001. The power of gifts: Organising social

relationships in open source communities. Information Systems Journal 11 (4): 305–

320.

Berners-Lee, T., M. Fishetti, and M. L. Dertouzous. 2000. Weaving the Web: The

original design and ultimate destiny of the World Wide Web. New York: HarperBusiness.

Bessen, J. 2001. Open source software: Free provision of complex public goods. Research

on Innovation paper. Available from: http://www.researchoninnovation.org/

opensrc.pdf.

Biagioli, M. 1993. Galileo, courtier: The practice of science in the culture of abso-

lutism. Chicago: University of Chicago Press.

Bishop, P., and R. Bloomfield. 1996. A conservative theory for long-term reliability-

growth prediction. IEEE Transactions on Reliability 45 (4): 550–560.

490 References

Bishop, P. G. 2001. Rescaling reliability bounds for a new operational profile. Pre-

seuted at the International Symposium on Software Testing and Analysis (ISSTA

2002), July 22–24, 2001, Rome, Italy.

Bloor, D. 1976. Knowledge and social imagery. London and Boston: Routledge & K.

Paul.

Bohm, N., I. Brown, and B. Gladman. 2000. Electronic commerce: Who carries

the risk of fraud? Journal of Information Law and Technology 3. Available from:

http://elj.warwick.ac.uk/jilt/00-3/bohm.html.

Bollier, D. 1999. The Power of Openness: Why Citizens, Education, Government and

Business Should Care About the Coming Revolution in Open Source Code Software.

Available from: http://h20project.law.harvard.edu/opencode/h20/.

Bollinger, T., R. Nelson, K. M. Self, and S. J. Turnbull. 1999. Open-source methods:

Peering through the clutter. IEEE Software (July 1999): 8–11.

Bond, M., and P. Zielinski. 2003. Decimalisation table attacks for PIN cracking.

Cambridge University Computer Laboratory Technical Report, no. 560. Available

from: http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf.

Boston Consulting Group (BCG). 2002. Survey of free software/open source developers.

Available from: http://www.osdn.com/bcg/.

Bovet, D. P., and M. Cesati. 2000. Understanding the Linux Kernel, 1st ed. Sebastopol,

CA: O’Reilly & Associates.

Brady, R. M., R. J. Anderson, and R. C. Ball. 1999. Murphy’s law, the fitness of evolv-

ing species, and the limits of software reliability. Cambridge University Computer

Laboratory Technical Report, no. 471. Available from: http://www.cl.cam.ac.uk/ftp/

users/rja14/babtr.pdf.

Boooks, F. 1975. The mythical man month. Reading, MA: Addison-Wesley.

Brooks, F. 1987. No silver bullet: Essence and accidents of software engineering. IEEE

Computer, April: 10–19.

Brooks, F. P. 1995. The mythical man-month: Essays on software engineering, 2nd, 20th

anniversary ed. Reading, MA: Addison-Wesley.

Brown, K. 2002. Opening the open source debate. Alexis de Toqueville Institution.

Available from: http://www.adti.net/opensource.pdf.

Browne, C. B. 1999. Linux and decentralized development. First Monday 3 (3). Avail-

able from: http://www.firstmonday.dk/issues/issue3_3/browne/index.html.

Butler, B., L. Sproull, S. Kiesler, and R. Kraut. 2002. Community effort in online groups:

Who does the work and why? (Unpublished Work.)

Butler, R. W., and G. B. Finelli. 1991. The infeasibility of experimental quantifica-

tion of life-critical software reliability. ACM Symposium on Software for Critical

Systems, December 1991, New Orleans. 66–76.

References 491

Caminer, D., J. Aris, P. Hermon, and F. Land. 1996. User-driven innovation: The world’s

first business computer. New York: McGraw-Hill.

Campbell, E. G., B. R. Clarridge, M. Gokhale, L. Birenbaum, S. Hilgartner, N. A.

Holtzman, and D. Blumenthal. 2002. Data withholding in academic genetics:

Evidence from a national survey. JAMA 287 (4): 23–30.

Capiluppi, A., P. Lago, and M. Morisio. 2003. Evidences in the evolution of OS pro-

jects through changelog analyses. In Proceedings of the 3rd Workshop on Open Source

Software Engineering, ICSE2003, Portland, Oregon, J. Feller, B. Fitzgerald, S. Hissam, and

K. Lakhani, eds. Available from: http://opensource.ucc.ie/icse2003.

Carayol, N., and J.-M. Dalle. 2000. Science wells: Modelling the “problem of problem

choice” within scientific communities. Presented at the 5th WEHIA Conference,

June 2001, Marseille.

Carleton, A. D., R. E. Park, W. B. Goethert, W. A. Florac, E. K. Bailey, and S. L. Pfleeger.

1992. Software measurement for DoD systems: Recommendations for initial core measures.

Tech. Rep. CMU/SEI-92-TR-19 (September). Software Engineering Institute, Carnegie

Mellon University, Pittsburgh.

Cassiman, B. 1998. The organization of research corporations and researcher ability.

(Unpublished working paper, University Pompeu Fabra.)

Castells, M. 1996. The rise of the network society. Malden, MA: Blackwell.

Castells, M. 2001. The Internet galaxy. Oxford: Oxford University Press.

Christensen, C. 2004. The law of conservation of attractive profits. Harvard Business

Review 82 (2): 17–18.

Chubin, D. E, and E. J. Hackett. 1990. Peerless science: Peer Review and U.S. Science

Policy. Albany: State University of New York Press.

Claymon, D. 1999. Apple in tiff with programmers over signature work. San Jose

Mercury News, December 2.

CNET News.com. 2001. Microsoft executive says Linux threatens innovation

(Update 1) [accessed February 14, 2001]. Archive closed. Authors retain paper copy.

Available on request.

Cockburn, I., R. Henderson, and S. Stern. 1999. Balancing incentives: The tension

between basic and applied research. Working Paper 6882. National Bureau of Economic

Research.

Collar-Kotelly, J. 2002. United States of America vs Microsoft, Inc. U.S. District Court,

District of Columbia, Civil Action No. 98-1232(CKK), Final Judgment (12 November

2002). Available from: http://www.usdoj.gov/atr/cases/f200400/200457.htm.

Collins, H. M. 1985. Changing order: Replication and induction in scientific practice.

London and Beverly Hills, CA: Sage.

Comer, D. E. 2000. Internetworking with TCP/IP: Principles, protocols, and archi-

tecture. Upper Saddle River, NJ: Prentice Hall.

492 References

Cox, A. Cathedrals, Bazaars and the Town Council.” Available from: http://

slashdot.org/features/98/10/13/1423253.shtml, October 1998.

Csikszentmihalyi, M. 1975. Beyond boredom and anxiety: The experience of play

in work and games. San Francisco: Jossey-Bass, Inc.

Csikszentmihalyi, M. 1990. Flow: The psychology of optimal experience. New York:

Harper and Row.

Csikszentmihalyi, M. 1996. Creativity: Flow and the Psychology of Discovery and

Invention. New York: HarperCollins.

Curtis, B., H. Krasner, and N. Iscoe. 1988. A field study of the software design process

for large systems. Communications of the ACM 31: 1268–1287.

Cusumano, M. A. 1991. Japan’s software factories: A challenge to U.S. management. New

York: Oxford University Press.

Cusumano, M. A., and R. W. Selby. 1995. Microsoft secrets: How the world’s most pow-

erful software company creates technology, shapes markets, and manages people. New

York: Free Press.

Dalle, J.-M., and N. Jullien. 2000. NT vs. Linux, or some explorations into the eco-

nomics of free software. In Application of simulation to social sciences, G. Ballot and

G. Weisbuch, eds., 399–416. Paris: Hermès.

Dalle, J.-M., and N. Jullien. 2003. “Libre” software: Turning fads into institutions?

Research Policy 32 (1): 1–11.

Dasgupta, P., and P. David. 1994. Towards a new economics of science. Research Policy

23: 487–521.

David, P. A. 1998a. Reputation and agency in the historical emergence of the insti-

tutions of “open science.” Center for Economic Policy Research, Publication No.

261. Stanford University, revised March 1994; further revised; December 1994.

David, P. A. 1998b. Common agency contracting and the emergence of “open

science” institutions. American Economic Review 88(2), May.

David, P. A. 1998c. Communication norms and the collective cognitive performance

of “invisible colleges.” In Creation and the transfer of knowledge: Institutions and in-

centives, G. Barba Navaretti, P. Dasgupta, K.-G. Maler, and D. Siniscako, eds. Berlin,

Heidelberg, New York: Springer-Verlag.

David, P. A. 2001a. Path dependence, its critics, and the quest for “historical eco-

nomics.” In Evolution and Path Dependence in Economic Ideas: Past and Present, P.

Garrouste and S. Ioannidies, eds. Cheltenham, England: Edward Elgar.

David, P. A. 2001b. The political economy of public science. In The Regulation of

Science and Technology, Helen Lawton Smith, ed. London: Palgrave.

David, P. A., S. Arora, and W. E. Steinmueller. 2001. Economic organization and via-

bility of open source software: A proposal to the National Science Foundation. SIEPR,

Stanford University, 22 January.

References 493

Davis, G., and M. Olson. 1985. Management information systems: Conceptual founda-

tions, structure, and development, 2nd ed. New York: McGraw-Hill.

Deci, E. L, and R. M. Ryan. 1985. Intrinsic motivation and self-determination in human

behavior. New York: Plenum Press.

Deci, E. L., R. Koestner, and R. M. Ryan. 1999. A meta-analytic review of experi-

ments examining the effects of extrinsic rewards on intrinsic motivation. Psycho-

logical Bulletin 125:627–688.

Dempsey, B. J., D. Weiss, P. Jones, and J. Greenberg. 1999. A quantitative profile of

a community of open source Linux developers. (Unpublished working paper, School

of Information and Library Science, University of North Carolina at Chapel Hill.)

Available from: http://metalab.unc.edu/osrt/develpro.html [accessed 01 November

1999].

Dempsey, B. J., D. Weiss, P. Jones, and J. Greenberg. 2002. Who is an open source

software developer? Communications of the ACM, April, 2002. Available from:

http://www.ibiblio.org/osrt/develpro.html.

Dessein, W. 1999. Authority and communication in organizations. (Unpublished

working paper, Université Libre de Bruxelles.)

DiBona, C., S. Ockman, and M. Stone, eds. 1999. Open sources: Voices from the open

source revolution. Sebastopol, CA: O’Reilly.

Eich, B. 2001. Mozilla development roadmap. Available from: http://

www.mozilla.org/roadmap.html.

Elliott, M. 2003. The virtual organizational culture of a free software development

community. In Proceedings of 3rd Workshop on Open Source Software Engineering,

ICSE2003, Portland Oregon, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani. Avail-

able from: http://opensource.ucc.ie/icse2003.

Enos, J. L. 1962. Petroleum progress and profits: A history of process innovation.

Cambridge, MA: MIT Press.

Farrell, J., and N. Gallini. 1988. Second sourcing as a commitment: Monopoly incen-

tives to attract competition. Quarterly Journal of Economics 103:673–694.

Farrell, J., and M. L. Katz. 2000. Innovation, rent extraction, and integration in

systems markets. Journal of Industrial Economics 48:413–432.

Feller, J., and B. Fitzgerald. 2000. A framework analysis of the open-source software

development paradigm. Proceedings of the 21st International Conference on Infor-

mation System: 58–69.

Feller, J., and B. Fitzgerald. 2002. Understanding open source software development.

London: Addison-Wesley.

Fenton, N. 1994. Software measurement: A necessary scientific basis. IEEE Transac-

tions on Software Engineering 20:199–206.

494 References

Fenton, N. E., and M. Neil. 1999. A critique of software defect prediction models.

IEEE Transactions on Software Engineering 25 (5): 675–689. Available from: http://

www.dcs.qmul.ac.uk/~norman/papers/defects_prediction_preprint105579.pdf.

Fielding, R. T. 1999. Shared leadership in the apache project. Commun. ACM

42:42–43.

Fisher, D. 2003. OIS tackles vulnerability reporting. Eweek.com (accessed 20 March

2003). Available from: http://www.eweek.com.

Fitzgerald, B., and T. Kenny, 2003. Open source software in the trenches: Lessons

from a large-scale implementation. Proceedings of the 24th International Confer-

ence on Information Systems (ICIS), Seattle, December 2003.

Forrester, J. E., and B. P. Miller. 2000. An empirical study of the robustness of

Windows NT applications using random testing. Available from: ftp://

ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-nt.pdf.

Foucault, M. 1972. The archaeology of knowledge and the discourse on language. New

York: Pantheon.

Franke, N., and E. von Hippel. 2002. Satisfying heterogeneous user needs via innovation

toolkits: The case of Apache security software. MIT Sloan School of Management

Working Paper No. 4341-02, January.

Franke, N., and S. Shah. 2003. How communities support innovative activities:

An exploration of assistance and sharing among end-users. Research Policy 32:157–

178.

FreeBSD. 2003a. Documentation project: Committer’s guide. Available from:

http://www.freebsd.org/doc/en_US.ISO8859-1/articles/committers-guide/.

FreeBSD. 2003b. Documentation Project: FreeBSD Handbook. Available from:

http://www.freebsd.org/doc/en_US.ISO8859=1/books/handbook/.

FreeBSD Release Engineering Team. 2003. The roadmap for 5-STABLE. Available

from: http://www.freebsd.org/doc/en/articles/5-roadmap/article.html.

Freeman, C. 1968. Chemical process plant: Innovation and the world market.

National Institute Economic Review 45:2957.

Frey, B. 1997. Not just for the money: An economic theory of personal motivation. Brook-

field, VT: Edward Elgar.

Gal-Or, E., and A. Ghose. 2003 The economic consequences of sharing security infor-

mation. Second Annual Workshop on Economics and Information Security, May

29–30, 2003, University of Maryland.

Gambardella, A. 1995. Science and innovation: The U.S. pharmaceutical industry during

the 1980s. Cambridge, UK: Cambridge University Press.

Garfield, E. 1979. Citation indexing: Its theory and application in science, technlogy, and

humanities. New York: Wiley.

References 495

German, D. M. 2002. The evolution of the GNOME Project. Proceedings of the 2nd

Workshop on Open Source Software Engineering, May 2002.

German, D. M. 2003. GNOME, a case of open source global software development.

Proceedings of the International Workshop on Global Software Development, May

2003.

German, D. M., and A. Mockus. 2003. Automating the measurement of open source

projects. Proceedings of the 3rd Workshop on Open Source Software Engineering,

May 2003.

Ghosh, R. A. 1994. The rise of an information barter economy. Electric Dreams

37 [accessed 21 November 1994]. Available from: http://dxm.org/dreams/

dreams37.html.

Ghosh, R. A. 1995. Implicit transactions need money you can give away. Electric

Dreams 70 [accessed 21 August 1995). Available from: http://dxm.org/dreams/

dreams70.html.

Ghosh, R. A. 1996. Informal law and equal-opportunity enforcement in cyberspace.

(Unpublished manuscript.)

Ghosh, R. A. 1998a. Cooking pot markets: an economic model for the trade in free

goods and services on the Internet. First Monday 3 (3). Available from:

http://www.firstmonday.org/issues/issue3_3/ghosh/index.html.

Ghosh, R. A. 1998b. What motivates free software developers: Interview with Linus

Torvalds. First Monday 3 (3). Available from: http://www.firstmonday.dk/issues/

issue3_3/torvalds/index.html.

Ghosh, R. A. 2002. Clustering and dependencies in free/open source software development:

Methodology and tools. SIEPR-Project NOSTRA Working Paper. Draft available from:

http://dxm.org/papers/toulouse2/.

Ghosh, R. A. 2005. Cooking-pot markets and balanced value flows. In Collaboration

and ownership in the digital economy, R. Ghosh, ed. Cambridge, MA: MIT Press.

Ghosh, R. A., and P. David. 2003. The nature and composition of the Linux kernel devel-

oper community: a dynamic analysis. SIEPR-Project NOSTRA Working Paper. Draft

available at http://dxm.org/papers/licks1/.

Ghosh, R. A., and V. Ved Prakash. 2000. The Orbiten free software survey. First

Monday 5 (7). Available from: http://firstmonday.org/issues/issue5_7/ghosh/.

Ghosh, R. A., R. Glott, B. Kreiger, and G. Robles-Martinez. 2002. The free/libre and

open source software developers survey and study—FLOSS final report. June. Avail-

able from: http://www.infonomics.nl/FLOSS/report_Final4.pdf.

Ghosh, R. A., R. Glott, B. Krieger, and G. Robles-Martinez. 2003. Community above

profits: Characteristics and motivations of open source and free software developers.

MERIT/Infonomics Working Paper. Draft available from: http://flossproject.org/

papers.htm.

496 References

Gibbons, R. 1997. Incentives and careers in organizations. In Advances in economic

theory and econometrics, D. Kreps and K. Wallis, eds., vol. 2. Cambridge, England:

Cambridge University Press.

Gibbons, R., and M. Waldman. 1999. Careers in organizations: theory and evidence.

In Handbook of Labor Economics, O. Ashenfelter and D. Card, eds., vol. 3B. North

Holland, New York: Elsevier.

Giddens, A. 1990. The consequences of modernity. Cambridge: Polity.

Glass, R. L. 1999. The realities of software technology payoffs. Communications of the

ACM, February.

Glass, R. L. 2002a. Holes found in open source code. The Software Practitioner.

September. Article available from author.

Glass, R. L. 2002b. Open source: It’s getting ugly (and political) out there! The

Software Practitioner. September. Article available from author.

Glass, R. L. 2003a. Security-related software defects: A top-five list. The Software

Practitioner. January. Article available from author.

Glass, R. L. 2003b. Software security: Which is better, open source or proprietary?

The Software Practitioner. January. Article available from author.

The GNOME Foundation. 2000. GNOME Foundation Charter Draft 0.61. Available

from: http://foundation.gnome.org/charter.html.

Godden, F. 2000. How do Linux and Windows NT measure up in real life? Available

from: http://gnet.dhs.org/stories/bloor.php3.

Gomulkiewicz, R. W. 1999. How copyleft uses license rights to succeed in the open

source software revolution and the implications for article 2B. Houston Law Review

36:179–194.

Gorman, M. 2003. A design, implementation, and algorithm analysis of a virtual

memory system for Linux. (Unpublished PhD thesis proposal.)

Greene, W. H. 2000. Econometric analysis. Upper Saddle River, NJ: Prentice-Hall.

Grinter, R. E., J. D. Herbsleb, and D. E. Perry. 1999. The geography of coordination:

Dealing with distance in r&d work. In GROUP ’99, 306–315. Phoenix, AZ.

Gwynne, T. 2003. GNOME FAQ. Available from: http://www.linux.org.uk/~telsa/

GDP/gnome-faq/.

Hagstrom, W. 1982. Gift giving as an organizing principle in science. In Science in

Context: Readings in the Sociology of Science, B. Barnes and D. Edge, eds. Cambridge,

MA: MIT Press.

Haitzler, C. 1999. Rasterman leaves RedHat. Slashdot. Available from: http://

slashdot.org/articles/99/05/31/1917240_F.shtml.

Hall, S. 1992. The West and the rest: Discourse and power. In Formations of Moder-

nity, S. Hall and B. Gieben, eds. Cambridge, MA: Polity Press.

References 497

Hammerly, J., T. Paquin, and S. Walton. 1999. Freeing the source: The story of

Mozilla. In Open sources: Voices from the open source revolution, C. DiBona, S. Ockman,

and M. Stone, eds. Sebastopol, CA: O’Reilly.

Hann, I-H., J. Roberts, S. Slaughter, and R. T. Fielding. Economic incentives for

participation in open source software projects? In Proceedings of the 23rd Interna-

tional Conference on Information Systems (ICIS 2002), Barcelona, Spain, December

2002.

Hansmann, H. 1996. The ownership of enterprise. Cambridge, MA: The Belknap Press

of Harvard University Press.

Haraway, D. J. 1997. Modest-Witness@Second-Millennium.FemaleMan-Meets-OncoMouse:

feminism and technoscience. New York: Routledge.

Harhoff, D., J. Henkel, and E. von Hippel. 2003. Profiting from voluntary informa-

tion spillovers: How users benefit from freely revealing their innovations. Available

from: http://opensource.mit.edu/papers/evhippel-voluntaryinfospillover.pdf.

Hars, A., and S. Ou. 2002. Working for free? Motivations for participating in open-

source projects. International Journal of Electronic Commerce 6 (3): 25–39.

Healy, K., and A. Schussman. 2003. The ecology of open-source software development.

(Unpublished manuscript, January 29, 2003. University of Arizona.)

Hecker, F. 1999. Mozilla at one: A look back and ahead. Available from:

http://www.mozilla.org/mozilla-at-one.html.

Henderson, R., and I. Cockburn. 1994. Measuring competence? Exploring firm

effects in pharmaceutical research. Strategic Management Journal 15:63–84.

Herbsleb, J. D., and R. E. Grinter. 1999. Splitting the organization and integrating

the code: Conway’s law revisited. Proceedings from the International Conference

on Software Engineering (ICSE ‘99), 85–95.

Herstatt, C., and E. von Hippel. 1992. From experience: Developing new product

concepts via the lead user method: A case study in a “low-Tech” field. Journal of

Product Innovation Management 9:213–221.

Hertel, G., S. Niedner, and S. Herrmann. 2003. Motivation of software developers in

open source projects: an Internet-based survey of contributors to the Linux kernel.

Research Policy. 32 (7): 1159–1177.

Himanen, P. 2001. The hacker ethic and the spirit of the information age. New York:

Random House.

Hissam, S., D. Carney, and D. Plakosh. 1998. SEI monograph series: DoD security needs

and COTS-based systems (monograph). Pittsburgh, PA: Software Engineering Insti-

tute, Carnegie Mellon University.

Hissam, S., D. Plakosh, and C. Weinstock. 2002. Trust and vulnerability in open

source software. IEE Proceedings-Software (149), February 2002. 47–51.

498 References

Hissam, S., C. B. Weinstock, D. Plakosh, and J. Asundi. 2001. Perspectives on open-

source software. Technical Report CMU/SEI-2001-TR-019. Software Engineering Insti-

tute, Carnegie Mellon University.

Hogle, S. 2001. Unauthorized derivative source code 18, no. 5, Computer and Inter-

net Law 1: 6.

Holmström, B. 1999. Managerial incentive problems: A dynamic perspective. Review

of Economic Studies 66:169–182.

Honeypot Project. 2002. Know your enemy: Revealing the security tools, tactics, and

motives of the blackhat community. Reading, MA: Addison-Wesley.

Howard, D. 2000. Source code directories overview. Available from: http://

mozilla.org/docs/source-directories-overview.html.

Howard, M., and D. LeBlanc. 2002. Writing secure code. Redmond, WA: Microsoft

Press.

Iacono, S. and R. Kling 1996. Computerization movements and tales of technolog-

ical utopianism. In Computerization and Controversy, 2nd ed., R. Kling, ed., San Diego:

Academic Press.

IEEE Computer Society. 1990. Standard computer dictionary: A compilation of IEEE

standard computer glossaries (610-1990), IEEE Std 610.12-1990. New York: IEEE

Publishing.

Iivari, J. 1996. Why are CASE tools not used? Communications of the ACM 30 (10):

94–103.

Jacobson, I., G. Booch, and J. Rumbaugh. 1999. The unified software development

process. Reading, MA: Addison-Wesley.

Jargon File 4.3.1 [online], [accessed 18 February 2002]. This version is now archived.

It can be viewed at: http://www.elsewhere.org/jargon.

Johns, A. 1998. The nature of the book. Chicago: University of Chicago Press.

Johnson, J. P. 1999. Economics of open-source software. (Unpublished working paper.

Massachusetts Institute of Technology.)

Jones, P. 2002. Brooks’ law and open source: The more the merrier? Does the open

source development method defy the adage about cooks in the kitchen? IBM devel-

operWorks, August 20.

Kelty, C. M. 2001. Free software/free science. First Monday 6 (12), December. Avail-

able from: http://www.firstmonday.org/issues/issue6_12/kelty/index.html.

Kerckhoffs, A. 1883. La cryptographie militaire. Journal des Sciences Militaires (5): 38.

Available from: http://www.petitcolas.net/fabien/kerckhoffs/crypto_militaire_1.pdf.

Kernighan, B. W. and R. Pike. 1984. The Unix programming environment. Upper Saddle

River, NJ: Prentice-Hall.

References 499

Klemperer, P. 1999. Auction theory: A guide to the literature. Journal of Economic

Surveys 13 (3): 227–286. Available from: http://www.paulklemperer.org.

Klemperer, P. 2002. Using and abusing economic theory—lessons from auction design.

Alfred Marshall lecture to the European Economic Association. Available from:

http://www.paulklemperer.org.

Knight, K. E. 1963. A study of technological innovation: The evolution of digital com-

puters. (Unpublished PhD dissertation, Carnegie Institute of Technology, Pittsburgh,

PA.)

Knuth, D. 1997. The art of computer programming. 3rd ed. 3 vols. Reading, MA:

Addison Wesley.

Kogut, B., and A. Metiu. 2001. Open-source software development and distributed

innovation. Oxford Review of Economic Policy 17 (2): 248–264.

Kollock, P. 1999. The economies of online cooperation: Gifts and public goods in

cyberspace. In Communities in cyberspace, M. A. Smith and P. Kollock, eds. London:

Routledge.

Krishnamurthy, S. 2002. Cave or community? An empirical examination of 100

mature open source projects. University of Washington, Bothell. Available from:

http://faculty.washington.edu/sandeep.

Krochmal, M. 1999. Linux interest expanding. TechWeb.com. Available from:

http://www.techweb.com/wire/story/TWB19990521S0021.

Kuan, J. 2001. Open source software as consumer integration into production.

Available from: http://papers.ssrn.com/paper.taf?abstract_id=259648.

Kuhn, T. 1962. The structure of scientific revolutions. Chicago: University of

Chicago Press.

Kuhn, T. 1996. The structure of scientific revolutions, 3rd ed. Chicago: University of

Chicago Press.

Lakhani, K. R., and E. von Hippel. 2003. How open source software works: “free”

user-to-user assistance. Research Policy 32:923–943.

Lakhani, K. R., and R. Wolf. 2001. Does free software mean free labor? Characteristics

of participants in free and open source communities. BCG Survey Report. Boston, MA:

Boston Consulting Group Report. Available from: http://www.ostg.com/bcg/.

Lakhani, K. R., B. Wolf, J. Bates, and C. DiBona. 2003. The Boston Consulting Group

hacker survey (in cooperation with OSDN). Available from: http://www.osdn.com/

bcg/bcg-0.73/BCGHackerSurveyv0-73.html.

Latour, B. 1986. Science in action. Cambridge, MA: Harvard University Press.

Latour, B., and S. Woolgar. 1979. Laboratory life: The social construction of scientific

facts. Beverly Hills, CA: Sage.

500 References

Lerner, J., and J. Tirole. 2000. The simple economics of open source. National Bureau

of Economic Research (NBER) Working Paper 7600 (March). Available from:

http://www.nber.org/papers/w7600.

Lerner, J., and J. Tirole. 2002. Some simple economics of open source. Journal of

Industrial Economics 50 (2): 197–234.

Lessig, L. 2000. Code: And other laws of cyberspace. New York: Basic Books.

Leung, K. S. 2002. Diverging economic incentives caused by innovation for security

updates on an information network. Available from: http://www.sims.berkeley.edu/

resources/affiliates/workshops/econsecurity/econws/19.pdf

Levy, S. 1994. Hackers: Heroes of the computer revolution. New York: Penguin Books.

Lim, K. 2000. The many faces of absorbtive capacity: Spillovers of copper inter-

connect technology for semiconductor chips. (MIT Sloan School of Management

working paper #4110.)

Lindenberg, S. 2001. Intrinsic motivation in a new light. Kyklos 54 (2/3): 317–342.

Lipner, S. B. 2000. Security and source code access: Issues and realities. Proceedings

of the 2000 Symposium on Security and Privacy, May 2000, Oakland, CA. IEEE

Computer Society, 124–125.

Ljungberg, J. 2000. Open source movements as a model for organising. European

Journal of Information Systems 9 (4): 208–216.

Lüthje, C. 2003. Characteristics of innovating users in a consumer goods field.

MIT Sloan School of Management working paper #4331-02, Technovation 23

(forthcoming).

Lüthje, C., C. Herstatt, and E. von Hippel. 2002. The dominant role of “local”

information in user innovation: The case of mountain biking. MIT Sloan School of

Management working paper (July). Available from: http://userinnovation.mit.edu.

Malone, T. W., and K. Crowston. 1994. The interdisciplinary study of coordination.

ACM Computing Surveys 26 (1): 87–119.

Markus, L., B. Manville, and C. Agres. 2000. What makes a virtual organization

work? Sloan Management Review 42 (1): 13–26.

Marwell, G., and P. Oliver. 1993. The critical mass in collective action: A micro-social

theory. Cambridge, England: Cambridge University Press.

Mateos-Garcia, J., and W. E. Steinmueller. 2003. The open source way of working: A

new paradigm for the division of labour in software development? INK Open Source

Research working paper No. 1, SPRU-University of Sussex, Brighton, England.

Mauss, M. 1950/1990. The gift: The form and reason for exchange in archaic societies.

London: Routledge.

McConnell, S. 1996. Rapid development. Redmond, WA: Microsoft Press.

References 501

McConnell, S. 1999. Open-source methodology: Ready for prime time? IEEE Soft-

ware (July/August): 6–8.

McGowan, D. 2002. Recognizing usages of trade: A case study from electronic com-

merce, Wash. U. J. Law and Policy 8 (167): 188–193.

McGraw, G. 2000. Will openish source really improve security? Proceedings of the

2000 Symposium on Security and Privacy, May 2000, Oakland, CA. IEEE Computer

Society, 128–129.

McKusick, M. K., K. Bostic, M. J. Karels, and J. Quarterman. 1996. The design and

implementation of the 4.4BSD operating system. Reading, MA: Addison-Wesley.

McLuhan, M. 1994. Understanding media. Cambridge, MA: MIT Press.

Melucci, A. 1996. Challenging codes: Collective action in the information age. Cam-

bridge: Cambridge University Press.

Merton, R. 1973. The sociology of science: Theoretical and empirical investigations. Edited

and with an introduction by Norman W. Storer. Chicago: University of Chicago

Press.

Merton, R. K., and H. Zuckerman. 1973. Institutionalized patterns of evaluation in

science. In The Sociology of Science, N. W. Storer, ed. Chicago: University of Chicago

Press.

Michlymayr, M., and B. Hill. 2003. Quality and the reliance on individuals in free

software projects. In Proceedings of 3rd Workshop on Open Source Software

Engineering, ICSE2003, Portland Oregon, J. Feller, B. Fitzgerald, S. Hissam, and K.

Lakhani, eds. Available from: http://opensource.ucc.ie/icse2003.

Midha, K. 1997. Software configuration management for the 21st century. Bell Labs

Tech. J. 2:154–155.

Milgrom, P., and R. Weber. 1982. A theory of auctions and competitive bidding.

Econometrica 50 (5): 1089–1122.

Miller, B. P., L. Fredriksen, and B. So. 1990. An empirical study of the reliability of

UNIX utilities. Available from: ftp://ftp.cs.wisc.edu/paradyn/technical_papers/

fuzz.pdf.

Miller, B. P., D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl.

1995. Fuzz revisited: A re-examination of the reliability of UNIX utilities and

services. Available from: ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-

revisited.pdf.

Mintzberg, H. 1979. The structuring of organizations. Upper Saddle River, NJ: Prentice

Hall.

Mirowski, P. 2001. Re-engineering scientific credit in the era of the globalized

information economy. First Monday 6 (12). Available from: http://firstmonday.org/

issues/issue6_12/mirowski/index.html.

502 References

Mirowski, P. 2002. Machine dreams: Economics becomes a cyborg science. New York:

Cambridge University Press.

Mirowski, P., and E. Sent. 2002. Science bought and sold: Essays in the economics of

science. Chicago: University of Chicago Press.

Mockus, A., and D. M. Weiss. 2001. Globalization by chunking: A quantitative

approach. IEEE Soft. 18 (2): 30–37.

Mockus, A., R. Fielding, and J. Herbsleb. 2000. A case study of open source software

development: The Apache server. Proceedings of the International Conference on

Software Engineering, June 5–7, 2000, Limerick, Ireland.

Moody, G. 2001. Rebel code: Inside Linux and the open source revolution. New York:

Perseus Press.

Moon, J. Y., and L. Sproull. 2000. Essence of distributed work: The case of the Linux

kernel. First Monday 5 (11). Available from: http://firstmonday.org/issues/

issue5_11/moon/index.html.

Morisio, M., A. Capiluppi, and P. Lago. 2003. How the open source projects evolve:

First drafts of models analyzing changelogs. In Proceedings of Workshop: How

to Make F/OSS Work Better, XP2003, Genoa, Italy, B. Fitzgerald and D. L. Parnas,

eds.

Morrison, P. D., J. H. Roberts, and E. von Hippel. 2000. Determinants of user inno-

vation and innovation sharing in a local market. Management Science 46 (12):

1513–1527.

Mozilla Project. Bugzilla. Available from: http://bugzilla.mozilla.org.

Mozilla Project. Module Owners. Available from: http://www.mozilla.org/

owners.html.

Mozilla Project. Quality Assurance page. Available from: http://www.mozilla.org/

quality/.

Mozilla Project. Source Code via CVS. Available from: http://www.mozilla.org/

cvs.html.

Mueth, D., and H. Pennington. 2002. GNOME Foundation FAQ. Available from:

http://mail.gnome.org/archives/foundation-list/2002-August/msg00208.html.

Nadeau, T. 1999. Learning from Linux [accessed 12 November 1999]. Available from:

http://www.os2hq.com/archives/linmemo1.htm.

Nakakoji, K., and Y. Yamamoto. 2001. Taxonomy of open-source software develop-

ment. Making sense of the bazaar: Proceedings of the 1st workshop on open source

software engineering. IEEE Computer Society: 41–42.

Nakamura, J., and M. Csikszentmihalyi. 2003. The construction of meaning through

vital engagement. In Flourishing: Positive psychology and the life well-lived, C. L. Keyes

and J. Haidt, eds. Washington, DC: American Psychological Association.

References 503

Narduzzo, A., and A. Rossi. 2003. Modularity in action: GNU/Linux and free/open

source software development model unleashed. Available from: http://

opensource.mit.edu/papers/narduzzorossi.pdf.

Naur, P., and B. Randall, eds. 1969. Software engineering: A report on a conference. Spon-

sored by the NATO Science Committee, Brussels: The Scientific Affairs Committee,

NATO.

Neumann, P. G. 1995. Computer-related risks. New York: ACM Press and Reading, MA:

Addison-Wesley.

Neumann, P. G. 1999. Robust open-source software. Communications of the ACM 42

(2): 128–129.

Neumann, P. G. 2000. Robust nonproprietary software. Proceedings of the 2000

Symposium on Security and Privacy, May 2000, Oakland, CA. IEEE Computer

Society: 122–123. Available from: http://www.csl.sri.com/neumann/ieee00.pdf.

Neumann, P. G. 2003a. Achieving principled assuredly trustworthy composable

systems and networks. Proceedings of DISCEX3, April 2003, volume 2. DARPA and

IEEE Computer Society.

Neumann, P. G. 2003b. Illustrative risks to the public in the use of computer systems and

related technology, index to RISKS cases. Technical report, Computer Science Labora-

tory, SRI International, Menlo Park, CA. Available from: http://www.csl.sri.com/

neumann/illustrative.html.

Neumann, P. G. 2004. Principled assuredly trustworthy composable architectures.

Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA.

Final report, SRI Project 11459. Available from: http://www.csl.sri.com/neumann/

chats4.html.

Nichols, D. M., and M. B. Twidale. 2003. The usability of open source software. First

Monday 8 (1). Available from: http://firstmonday.org/issues/issue8_1/nichols/

index.html.

Niedner, S., G. Hertel, and S. Hermann. 2000. Motivation in free and open source

projects. Available from: http://www.psychologie.uni-kiel.de/linux-study/.

Oberndorf, P., and J. Foreman. 1999. Lessons learned from adventures in COTS-land.

Track 8 on CD-ROM. Proceedings of the 11th Annual Software Technology Confer-

ence, Utah State University, May 2–6, 1999, Salt Lake City, UT. Hill AFB, UT: Utah

State University-Extension in cooperation with the Software Technology Support

Center.

Oeschger, I., and D. Boswell. 2000. Getting your work into Mozilla. Available from:

http://www.oreillynet.com/pub/a/mozilla/2000/09/29/keys.html.

Ogawa, S. 1997. Does sticky information affect the locus of innovation? Evidence

from the Japanese convenience-store industry. Research Policy 26:777–790.

O’Mahony, S. 2002. Community-managed software projects: The emergence of a

new commercial actor. (Doctoral dissertation, Stanford University.)

504 References

O’Mahony, S. 2003. Guarding the commons: How community-managed software

projects protect their work. Research Policy 1615:1–20.

O’Mahony, S. Forthcoming. Managing community software in a commodity world.

In Frontiers of capital: Ethnographic reflections on the new economy, G. Downey and M.

Fisher, eds. (Duke University Press, forthcoming.)

Open Source Initiative. 1999. Open source definition [accessed 14 November 1999].

Available from: http://www.opensource.org/osd.html.

O’Reilly, T. 1999. Ten myths about open source software. Available from:

http://opensource.oreilly.com/news/myths_1199.html.

O’Reilly, T. 2000. Open source: The model for collaboration in the age of the Inter-

net. Wide Open News. Available from: http://www.oreillynet.com/pub/a/network/

2000/04/13/CFPkeynote.html.

Ortega, J. 2000. Power in the firm and managerial career concerns. (Unpublished

working paper, Universidad Carlos III de Madrid.)

Paquin, T., and L. Tabb. 1998. Mozilla.org: Open-Source Software. Available at

http://www.mozilla.org.

Parnas, D. L. 1972. On the criteria used in decomposing systems into modules. Com-

munications of the ACM 15 (12): 1053–1058.

Parnas D. L. 1979. Designing software for ease of extension and contraction. IEEE

Transactions on Software Engineering (March): 128–138.

Parnas, D. L. 1994a. Inspection of safety critical software using function tables. Pro-

ceedings of IFIP World Congress, August 1994, Volume III. 270–277.

Parnas, D. L. 1994b. Software aging. Proceedings of the 16th International Confer-

ence on Software Engineering, May 16–21, 1994, Sorento, Italy. IEEE Press: 279–287.

Parnas, D. L., G. J. K. Asmis, and J. Madey. 1991. Assessment of safety-critical soft-

ware in nuclear power plants. Nuclear Safety 32 (2): 189–198. (special issue on the

7th International Conference on Software Engineering).

Parnas, D. L., P. C. Clements, and D. M. Weiss. 1985. The modular structure of

complex systems. IEEE Transactions on Software Engineering 11 (3): 259–266.

Pavlicek, R. 2000. Embracing insanity: Open source software development. Indianapolis:

SAMS Publishing.

Pavlicek, R. 2002. Buggy whips for India. Infoworld [accessed 22 November 2002].

Available from: http://www.infoworld.com/article/02/11/22/021125opsource_1.html

(requires free website registration).

Peirce, C. S. 1879. Note on the theory of the economy of research. United States Coast

Survey for the fiscal year ending June 1876. Washington, D.C.: U.S. Government

Printing Office, 1879. Reprint. The collected papers of Charles Sanders Peirce, vol. 7, A.

Burkes, ed. Cambridge, MA: Harvard University Press, 1958.

References 505

Perazzoli, E. 2001. Ximian evolution: The GNOME groupware suite. Available from:

http://developer.ximian.com/articles/whitepapers/evolution/.

Perens, B. 1998. Why KDE is still a bad idea. Slashdot.com. Available from:

http://slashdot.org/features/older/9807150935248.shtml.

Perens, B. 1999. The open source definition. In Open sources: voices from the open

source revolution, C. DiBona, S. Ockman, and M. Stone, eds. Sebastopol, CA: O’Reilly.

Pickering, A. 1984. Constructing quarks: A sociological history of particle physics.

Chicago: University of Chicago Press.

Polanyi, M. 1969. The republic of science: Its political and economic theory. Minerva

1:54–73.

Potter, E. 2001. Gender and Boyle’s law of gases. Bloomington: Indiana University Press.

President’s Information Technology Advisory Committee (PITAC). 2000. Panel on

open-source software for high-end computing, L. Smarr, L., and S. Graham, co-

chairs. Developing open-source software to advance high-end computing [accessed 11 Sep-

tember 2000]. Available from: http://www.itrd.gov/pubs/pitac/pres-oss-11sep00.pdf.

Pressman, R. S. 2000. Software Engineering. London: McGraw-Hill.

Rain Forest Puppy. 2003. Issue disclosure policy v1.1. Available from: http://www.

wiretrip.net/rfp/policy.html.

Raymond, E. 1996. The New Hacker’s Dictionary, 3rd ed. Cambridge, MA: MIT Press.

Raymond, E. S. 1999a. A response to Nikolai Bezroukov. First Monday 4 (11). Avail-

able from: http://firstmonday.org/issues/issue4_11/raymond/index.html.

Raymond, E. S. 1999b. Shut up and show them the code [accessed 18 August 2002].

Available from: http://www.tuxedo.org/~esr/writings/shut-up-and-show-them.html.

Raymond, E. S. 2001. The cathedral and the bazaar: Musings on Linux and open

source by an accidental revolutionary. Sebastopol, CA: O’Reilly.

Raymond, E. S. 2003a. Introduction to The Halloween Documents [accessed 10

February 2003]. Available from: http://www.opensource.ac.uk/mirrors/www.

opensource.org/halloween/.

Raymond, E. S. 2003b. The art of Unix programming. Reading, MA: Addison-Wesley.

Reed, T. 2001. An “un-American” essay [accessed 10 February 2003]. Available from:

http://lwn.net/2001/0222/a/tr-unamerican.php3.

The Register. 2001. Ballmer: Linux is a cancer. The Register [accessed 6 February 2001].

This version is now archived. It can be viewed at: http://www.theregister.co.uk/

2001/06/02/ballmer_linux_is_a_cancer/.

Rescorla, E. 2004. Is finding security holes a good idea. Workshop on Economics

and Information Security, May 13–15, 2004, Minneapolis. Available from:

http://www.rtfm.com/bugrate.html.

506 References

Rice, J. R., and S. Rosen. 2002. History of the department of computer sciences at Purdue

University. Available from: http://www.cs.purdue.edu/history/history.html.

Riggs, W., and E. von Hippel. 1994. Incentives to innovate and the sources of

innovation: The case of scientific instruments. Research Policy 23 (4): 459–469.

Ritti, R. R. 1971. The engineer in the industrial corporation. New York: Columbia

University Press.

Ritti, R. R. 1998. Between craft and science technical work in U.S. settings. Admin-

istrative Science Quarterly 43 (9): 724–726.

Robles-Martínez, G., H. Scheider, I. Tretkowski, and N. Weber. 2001. WIDI: Who is

doing it?. Technical University of Berlin. Available from: http://widi.berlios.de/paper/

study.html.

Rochkind, M. J. 1975. The source code control system. IEEE Trans. Softw. Eng.

1:364–370.

Ronde, T. 1999. Trade secrets and information sharing. (Unpublished working paper,

University of Mannheim.)

Rosenberg, N. 1976a. Perspectives on technology. Cambridge: Cambridge University

Press.

Rosenberg, N. 1976b. Technological change in the machine tool industry,

1840–1910. In Perspectives on technology. Cambridge. See also: Uncertainty and tech-

nological change. In The Mosaic of Economic Growth, Landau, Taylor and Wright,

Stanford 1996, esp. 345–347.

Rosenbloom, R. S., and W. J. Spencer, eds. 1996. Engines of innovation: U.S. industrial

research at the end of an era. Boston: Harvard Business School Press.

Roy, A. 2003. Microsoft vs. Linux: Gaining traction. Chartered Financial Analyst 9 (5):

36–39.

Ryan, R. M., and E. L. Deci. 2000. Intrinsic and extrinsic motivations: Classic

definitions and new directions. Contemporary Educational Psychology 25:54–67.

Sanders, J. 1998. Linux, open source, and software’s future. IEEE Software 15

(September/October): 88–91.

Santayana, G. 1906. The Life of Reason, or The Phases of Human Progress. New York:

Scribner’s Sons.

Scacchi, W. 2002. Understanding the requirements for developing open source soft-

ware systems. IEEE Software 149 (1): 24–39.

Schach, S., B. Jin, and D. Wright. 2002. Maintainability of the Linux kernel. In

Proceedings of 2nd Workshop on Open Source Software Engineering, ICSE2002,

Orlando, FL, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds. Available from:

http://opensource.ucc.ie/icse2002.

References 507

Schaefer, M. 2001. Panel comments at the 2001 IEEE Symposium on Security and

Privacy, Oakland, CA, May 13–16, 2001.

Schneider, F. B. 2000. Open source in security: Visiting the bizarre. In Proceedings

of the 2000 Symposium on Security and Privacy, May 2000, Oakland, CA. IEEE Com-

puter Society: 126–127.

Shah, S. 2000. Sources and patterns of innovation in a consumer products field:

Innovations in sporting equipment. Sloan Working Paper #4105 (May).

Shankland, S. 2002. Tiemann steers course for open source. ZDNet [accessed

4 December 2002]. Available from: http://news.zdnet.com/2100-3513 22-975996.

html.

Shapin, S., and S. Schaffer. 1985. Leviathan and the air pump: Hobbes, Boyle, and the

experimental life. Princeton, NJ: Princeton University Press.

Shaw, B. 1985. The role of the interaction between the user and the manufacturer

in medical equipment innovation. R&D Management 15 (4): 283–292.

Shaw, M. 1996. Truth vs. knowledge: The difference between what a component

does and what we know it does. Proceedings of the 8th International Workshop on

Software Specification and Design, March 22–23, Schloss Velen, Germany. Los

Alamitos, CA. IEEE Computer Society: 181–185.

Shepard, A. 1987. Licensing to enhance demand for new technologies. RAND Journal

of Economics 18:360–368.

Shirky, C. 2001. The great re-wiring. Presented at Inventing the Post-Web World:

The O’Reilly Peer-to-Peer and Web Services Conference. Washington, D.C.,

November 5–8, 2001.

Simmel, G. 1978. The philosophy of money. Translated by Tom Bottomore and David

Frisby. London, Boston: Routledge & Kegan Paul.

Smith, M. and P. Kollock, eds. 1999. Communities in cyberspace. London: Routledge.

Software Engineering Institute. 2003. What is software engineering? Available from:

http://www.sei.cmu.edu/about/overview/whatis.html.

Sommerville, I. 2001. Software engineering, 6th ed. Hanlow: Pearson.

Stallman, R. M. 1999a. The GNU operating system and the free software movement.

In Open sources: Voices from the open source revolution, C. DiBona, S. Ockman, and M.

Stone, eds. Sebastopol, CA: O’Reilly.

Stallman, R. M. 1999b. RMS responds [accessed 18 February 2002]. Available from:

http://slashdot.org/ articles/99/06/28/1311232.shtml.

Stamelos, I., L. Angelis, and A. Oykonomou. 2001. Code quality analysis in

open-source software development. Information Systems Journal 11 (4): 261–274.

Steven, W. R. 1994. TCP/IP Illustrated: The Protocols (APC). Reading, MA:

Addison-Wesley.

508 References

Stutz, D. 2003. Advice to Microsoft regarding commodity software. Available from:

http://www.synthesist.net/writing/onleavingms.html.

Stutz, D. 2004a. The natural history of software platforms. Available from:

http://www.synthesist.net/writing/software_platforms.html.

Stutz, D. 2004b. Some implications of software commodification. Available from:

http://www.synthesist.net/writing/commodity_software.html.

Taschek, J. 1999. Vendor seeks salvation by giving away technology [accessed 17

December 1999]. Available from: http://www.zdnet.com/pcweek/stories/news/

0,4153,404867,00.html (no longer on line).

Taschek, J. 2002. Can the LSB resist industry pressure? eWeek.com. Available from:

http://www.eweek.com/article2/0,3959,485538,00.asp.

The Tao of IETF. 2001. A novice’s guide to the Internet Engineering Task Force. RFC

3160. August. Available from: http//www.faqs.org/rfcs/rfc3160.html.

Thompson, K. 1999. Unix and beyond: An interview with Ken Thompson. IEEE

Computer (5): 58–64.

Thörn, Håkan. 1997. Modernitet, sociologi och sociala rörelser. (Monograph from the

Department of Sociology, Göteborg University (62).)

Torvalds, L., and Diamond, D. 2001. Just for fun: The story of an accidental revolu-

tionary. New York: Harper Collins.

Touraine, A. 1981. The voice and the eye: An analysis of social movements. Cambridge:

Cambridge University Press.

U.S. Department of Commerce, U.S. government working group on electronic com-

merce. 2001. “Leadership for the new millennium: Delivering on digital progress

and prosperity.”

Urban, G. L., and E. von Hippel. 1988. Lead user analyses for the development of

new industrial products. Management Science 34 (5): 569–582.

U.S. Department of Labor, Bureau of Labor Statistics. 2000. Occupational outlook

handbook: 2000–2001 edition. Washington: Government Printing Office.

Valloppillil, V. 1998. Open source software: A (new?) development methodology [also

referred to as The Halloween Document] [accessed 9 November 1999]. (Unpublished

working paper, Microsoft Corporation.) Available from: http://www.opensource.org/

halloween/halloween1.html.

van Maanen, J., and S. R. Barley. 1984. Occupational communities: Culture and

control in organizations. Research in Organizational Behavior 6:287–365.

Varian, H. 2002. System reliability and free riding. Available from: http://

www.sims.berkeley.edu/resources/affiliates/workshops/econsecurity/econws/49.pdf.

Vitalari, N., and G. Dickson. 1983. Problem solving for effective systems analysis:

An experimental exploration. Communications of the ACM 11:948–956.

References 509

Vixie, P. 1999. Software engineering. In Open sources: Voices from the open source rev-

olution, C. Dibona, S. Ockman, and M. Stone, eds. Sebastopol, CA: O’Reilly.

von Hippel, E. 1986. Lead users: A source of novel product concepts. Management

Science 32 (7): 791–805.

von Hippel, E. 1988. The sources of innovation. New York: Oxford University Press.

von Hippel, E. 1994. Sticky information and the locus of problem solving: Implica-

tions for innovation. Management Science 40 (4): 429–439.

von Hippel, E. 2001a. Innovation by user communities: Learning from open source

software. Sloan Management Review 42 (4): 82–86.

von Hippel, E. 2001b. Perspective: User toolkits for innovation. Journal of Product

Innovation Management 18:247–257.

von Hippel, E. 2002. Horizontal innovation networks—by and for users. MIT

Sloan School of Management (April). Available from: http://opensource.mit.edu/

papers/vonhippel3.pdf.

von Hippel, E. 2005. Democratizing innovation. Cambridge, MA: MIT Press.

von Hippel, E., and S. N. Finkelstein. 1979. Analysis of innovation in automated

clinical chemistry analyzers. Science & Public Policy 6 (1): 24–37.

von Hippel, E., and G. von Krogh. 2003. Open source software and the private-

collective innovation model: Issues for organization science. Organization Science

March–April 14 (2): 209–223.

von Krogh, G., S. Spaeth, and K. R. Lakhani. 2003. Community, joining, and

specialization in open source software innovation: A case study. Research Policy

32:1217–1241.

Wall, L. 1999. The origin of the camel lot in the breakdown of the bilingual Unix.

Communications of the ACM 42 (4): 40–41.

Wayner, P. 2000. Free for all: How Linux and the free software movement undercut the

high-tech titans. New York: HarperBusiness.

Weber, M. 1946. Science as vocation. In From Max Weber: Essays in sociology. Trans-

lated, edited, and with an introduction by H. H. Gerth and C. Wright Mills. New

York: Oxford University Press.

Weber, S. 2000. The political economy of open source software. BRIE Working Paper 140,

E-conomy Project Working Paper 15 (June). Available from: http://economy.

berkeley.edu/publications/wp/wp140.pdf.

Wellman, B., J. Boase, and W. Chen. 2002. The networked nature of community on and

off the Internet. (Working paper, Centre for Urban & Community Studies, University

of Toronto, May.)

Whalley, P. 1986. Markets, managers, and technical autonomy. Theory and Society

15: 223–247.

510 References

Whalley, P., and S. R. Barley. 1997. Technical work in the division of labor: Stalking

the wily anomaly. In Between craft and science: Technical work in U.S. settings, S. R.

Barley and Julian E. Orr, eds. Ithaca, NY: Cornell University Press.

Wiegers, K. 2002. Peer reviews in software: A practical guide. Boston, MA:

Addison-Wesley.

Wikipedia. 2003. The free encyclopedia [accessed 17 February 2003]. Available from:

http://www.wikipedia.com/wiki/Hacker.

Williams, S. 2000. Learning the ways of Mozilla. Upside Today. Available from:

http://www.upside.com/texis/mvm/story?id=39e360180 (no longer published).

Williams, S. 2002. Free as in freedom: Richard Stallman’s crusade for free software.

Sebastopol, CA: O’Reilly.

Winton, D., G. P. Zachary, J. Halperin, and PBS Home Video. 2000. Code rush.

Winton/duPont Films: distributed by PBS Home Video. San Jose, CA. Available from:

http://scolar.vsc.edu:8004/VSCCAT/ACZ-6594.

Witten, B., C. Landwehr, and M. Caloyannides. 2000. Will open source really

improve security? 2000 Symposium on Security and Privacy (oral presentation

only), May 2000, Oakland, CA. IEEE Computer Society. Available from:

http://www.csl.sri.com/neumann/witten.pdf.

Woodruff, D. 1999. Money unmade: Barter and the fate of Russian capitalism. Ithaca,

NY: Cornell University Press.

Yeh, C. 1999. Mozilla tree verification process. Available from: http://www.mozilla.

org/build/verification.html.

Zawinski, J. 1999. Resignation and postmortem. Available from: http://www.jwz.org/

gruntle/nomo.html.

Zhao, L., and S. Elbaum. 2000. A survey of quality-related activities in open source.

Software Engineering Notes. May, 54–57.

Zoebelein, H. U. 1999. The Internet Operating System Counter. Available from

http://www.leb.net/hzo/ioscount/.

References 511

List of Contributors

About the Editors

Joseph Feller PhD is a Senior Lecturer in Business Information Systems at
University College Cork, Ireland. He has chaired the annual international
Open Source Software Engineering workshop series since it was established
at ICSE in 2001. He is the coauthor, with Brain Fitzgerald, of Understand-
ing Open Source Software Development (Addison-Wesley, 2002). His research
on free/open source software has been presented in international journals
and conference proceedings, and he has served as guest editor (again with
Fitzgerald) for F/OSS special issues of Information Systems Journal, IEE
Proceedings–Software (with Andre van der Hoek), and Systèmes d’Information
et Management (with Frederic Adam). Joseph received his PhD from UCC,
and a BA from American University.

Brian Fitzgerald holds the endowed Frederick A. Krehbiel II Chair in
Innovation in Global Business and Technology, at the University of
Limerick, Ireland, where he is also a research fellow and a Science Founda-
tion Ireland investigator. He has a PhD from the University of London and
has held positions at University College Cork, Ireland, Northern Illinois
University, U.S., the University of Gothenburg, Sweden, and Northumbria
University, UK. His publications include seven books and more than 60
papers published in leading international conferences and journals. Having
worked in the industry prior to taking up an academic position, he has
more than 20 years experience in the IS field.

Scott A. Hissam is a senior member of the technical staff for the Soft-
ware Engineering Institute at Carnegie Mellon University, where he
conducts research on component-based software engineering and open
source software. He is also an adjunct faculty member of the University
of Pittsburgh. His previous publications include one book, papers

published in international journals including IEEE Internet Computer and
the Journal of Software Maintenance, and numerous technical reports pub-
lished by CMU. Prior to his position at the SEI, Hissam held positions at
Lockheed Martin, Bell Altantic, and the U.S. Department of Defense. He
has a bachelor of science degree in computer science from West Virginia
University.

Karim R. Lakhani is a doctoral candidate in management at the MIT Sloan
School of Management and a strategy consultant with the Boston Con-
sulting Group. He is a cofounder of the MIT Open Source Research Project
and runs the MIT-based Open Source Research Community Web portal. His
research at MIT is focused on the management of technological innova-
tion with a specific focus on coordination and innovation in open source
communities and firms. His work at BCG is at the intersection of emerg-
ing technologies, intellectual property and new organization forms. He
has a bachelor’s degree in electrical engineering and management from
McMaster University, Canada, and a masters in technology and policy from
MIT. Previously he worked at GE Medical Systems.

About the Contributors

Philippe Aigrain is the founder and CEO of the Society for Public Infor-
mation Spaces (www.sopinspace.com), a venture specializing in free soft-
ware tools and services for Internet-based public debate on policy issues.
Prior to that, he worked for the Information Society DG of the European
Commission where he coordinated actions related to F/OSS until April
2003. He was trained as a mathematician and computer scientist, and has
researched subjects such as compilers, interaction with audiovisual media,
and the sociology of information exchanges.

Ross Anderson was one of the founders of the study of information secu-
rity economics and chairs the Foundation for Information Policy Research.
A fellow of the IEE, he was also one of the pioneers of peer-to-peer systems,
of API attacks on cryptographic processors, and of the study of hardware
tamper-resistance. He was one of the inventors of Serpent, a finalist in the
competition to find an advanced encryption standard. He is Professor of
Security Engineering at the Computer Laboratory, Cambridge University,
and wrote the standard textbook Security Engineering—A Guide to Building
Dependable Distributed Systems (Wiley).

Magnus Bergquist is associate professor in cultural anthropology,
Göteborg University. He was written several papers and book chapters on

514 List of Contributors

open source and free software communities with special focus on the
social, cultural, and symbolic issues in F/OSS communities related to orga-
nization, identity, power, knowledge sharing, gift giving, and cooperation.

Michael A. Cusumano is the Sloan Management Review Distinguished
Professor at the MIT’s Sloan School of Management. He specializes in
strategy, product development, and entrepreneurship in the computer soft-
ware industry, as well as automobiles and consumer electronics. Professor
Cusumano received a BA degree from Princeton in 1976 and a PhD from
Harvard in 1984. He completed a postdoctoral fellowship in production
and operations management at the Harvard Business School during
1984–1986. Professor Cusumano is the author or coauthor of eight books.
His most recent book, The Business of Software, was published in spring
2004.

Jean-Michel Dalle is an adjunct professor with the University Pierre-
et-Marie-Curie and a researcher with IMRI-Dauphine, both in Paris. He
specializes in the economics of innovation, and since 1998 he has been
studying open source software. In this respect, his contributions have
focused on competitive changes in software markets, open source business
models and the current evolutions of the software industry, and the
dynamics of open source communities. Most of these research activities
have been realized in the context of collaborative projects sponsored by
the Réseau National des Technologies Logicielles (RNTL, France), the Sixth
Framework Programme (FP6, EU) and the National Science Foundation
(NSF, United States).

Paul A. David is known internationally for his contributions to econo-
mic history, economic and historical demograhy, and the economics
of science and technology. A pioneering practitioner of the so-called new
economic history, his research has illuminated the phenomenon of path
dependence in economic processes. Two lines in David’s research—one on
the ways that “history matters” in the evolution of network technology
standards, and the other on the organization of scientific research com-
munities (including the impacts of IPR policies upon “open science”)—
recently have coalesced in his undertaking of an extensive international
collaborative program of research on free/libre and open source software
development. During the past decade David has divided his time between
Stanford University, where he is professor of economics and a senior fellow
of the Stanford Institute for Economic Policy Research (SIEPR), and the
University of Oxford, where he is a senior fellow of the Oxford Internet
Institute and an emeritus fellow of All Souls College.

List of Contributors 515

Roy T. Fielding is chief scientist at Day Software and a member,
cofounder, and former chairman of The Apache Software Foundation. He
is best known for his work in developing and defining the modern World
Wide Web infrastructure by authoring the Internet standards for HTTP and
URI, defining the REST architectural style, and founding several open
source software projects related to the Web. Dr. Fielding received his PhD
degree in information and computer science from the University of
California, Irvine, and serves as an elected member of the W3C Technical
Architecture Group.

Rishab Aiyer Ghosh is founding international and managing editor
of First Monday, the most widely read peer-reviewed on-line journal of
the Internet. He is programme leader at MERIT/International Institute
of Infonomics at the University of Maastricht, Netherlands, and has
published over a million words on the socioeconomics, law, and tech-
nology of the Internet for newsletters, journals, and magazines around
the world. He speaks frequently at conferences on the socioeconomics
of the Internet and free/open source software, most recently at the
UNCTAD Commission, Geneva, and the Business Council for the UN, New
York. He published one of the first surveys of open source code authorship
based on an automated source code scan (the Orbiten Free Software Survey,
1999–2000), a major source code survey of 25,000 open source projects as
part of the FLOSS Project in 2002, and the Linux: Chronology of Kernel
Sources (LICKS) project together with Stanford University. He continues to
collaborate on joint research related to open source metrics and produc-
tivity with Stanford University supported by the U.S. National Science
Foundation.

Daniel M. German is assistant professor at the University of Victoria,
Canada. His areas of research are the design of hypermedia applications,
the formal specification of hypermedia and software systems, and the evo-
lution of open source software. He obtained his PhD from the University
of Waterloo in 2000.

Robert L. Glass is president of Computing Trends, publishers of The Soft-
ware Practitioner. He has been active in the field of computing and software
for over 45 years, largely in industry (1954–1982 and 1988–present), but
also as an academic (1982–1988). He is the author of 25 books and over
90 papers on computing subjects, editor of The Software Practitioner, editor
emeritus of Elsevier’s Journal of Systems and Software, and a columnist for
several periodicals including Communications of the ACM (the “Practical

516 List of Contributors

Programmer” column) and IEEE software (“The Loyal Opposition”). He was
for 15 years a lecturer for the ACM, and was named a fellow of the ACM
in 1998. He received an honorary PhD from Linkoping University in
Sweden in 1995. He describes himself by saying “my head is in the
academic area of computing, but my heart is in its practice.”

James Herbsleb is associate professor of computer science at Carnegie
Mellon University. His research focuses primarily on communication
and coordination in large software projects, including geographically
distributed commercial and open source developments. He has a PhD in
psychology from the University of Nebraska, and completed an MS in
computer science and a postdoctoral research fellowship at the University
of Michigan. His research includes both empirical studies and the design
and deployment of collaboration technologies.

Niels Jørgensen is associate professor at Roskilde University, Denmark. He
is interested in open source (of course) and in technologies for data secu-
rity, such as encryption, and how they are shaped by scientific, technical,
and social processes. He has studied cultural sociology and mathematics
and earned a PhD in computer science in 1992.

Christopher Kelty is an assistant professor in the Department of Anthro-
pology at Rice University. His undergraduate degree is from the University
of California, Santa Cruz, and his PhD in the history and social study of
science and technology is from MIT. Kelty has studied telemedicine pro-
fessionals and the political economy of information in healthcare; the free
software and open source movements; cultural aspects of intellectual prop-
erty law; and the ethics and politics of research in computer science and
in nanotechnology. He is a core participant in the Connexions project (an
open content educational commons).

Sandeep Krishnamurthy is associated professor of e-commerce and
marketing at the University of Washington, Bothell. He obtained his
PhD from the University of Arizona in marketing and economics. He has
developed and taught several innovative courses related to e-commerce to
both MBA and undergraduate students and has written extensively about
e-commerce. Most recently, he has published a 450-page MBA textbook
titled E-Commerce Management: Text and Cases. His scholarly work on
e-commerce has appeared in journals such as the Journal of Consumer
Affaris, the Journal of Computer-Mediated Communication, the Quarterly
Journal of E-Commerce, Marketing Management, First Monday, the Journal
of Marketing Research, and the Journal of Service Marketing. His writings in

List of Contributors 517

the business press have appeared on Clickz.com, Digitrends.net, and
Marketingprofs.com. His comments have been featured in press articles
in outlets such as Marketing Computers, Direct Magazine, Wired.com,
Medialifemagazine.com, Oracle’s Profit Magazine, and the Washington Post.
Sandeep also works in the areas of generic advertising and nonprofit
marketing.

Mark Lawford is an assistant professor with the Department of Com-
puting And Software, MacMaster University. He was awarded the PhD
by the University of Toronto. Formerly, he was a contractor at Ontario
Hydro performing formal verification of the Darlington Nuclear Generat-
ing Station Shutdown System Trip Computer Software, during which time
he was a corecipient of an Ontario Hydro New Technology award. His
research interests fall under the general heading of control of discrete event
systems (DES) and in particular formal methods for real-time systems
(synthesis, verification, and model reduction), supervisory control of both
nondeterministic and probabilistic DES, and hybrid systems. Mark is a
licensed professional engineering in the province of Ontario.

Josh Lerner is the Jacob H. Schiff Professor of Investment Banking at
Harvard Business School, with a joint appointment in the finance and the
entrepreneurial management units. He graduated from Yale with a special
divisional major that combined physics with the history of technology. He
worked for several years on issues concerning technological innovation
and public policy at the Brookings Institution, for a public-private task
force in Chicago, and on Capitol Hill. He then undertook his graduate
study at Harvard’s Economics Department. His research focuses on the
structure of venture capital organizations and the impact of intellectual
property protection, particularly patents, on the competitive strategies
of firms in high-technology industries. He is a research associate in the
National Bureau of Economic Research’s Corporate Finance and Produc-
tivity Programs and serves as coorganizer of the Innovation Policy and
the Economy Group, coeditor of their publication Innovation Policy and
the Economy, organizer of the Entrepreneurship Working Group, as well as
serving a variety of administrative roles at Harvard.

Lawrence Lessig is a professor of law at Stanford Law School and founder
of the school’s Center for Internet and Society. Prior to joining the
Stanford faculty, he was the Berkman Professor of Law at Harvard Law
School. Lessig was also a fellow at the Wissenschaftskolleg zu Berlin, and
a professor at the University of Chicago Law School. He clerked for Judge
Richard Posner on the 7th Circuit Court of Appeals and Justice Antonin

518 List of Contributors

Scalia on the United Sates Supreme Court. More recently, Professor Lessig
represented Web site operator Eric Eldred in the groundbreaking case
Eldred v. Ashcroft, a challenge to the 1998 Sonny Bono Copyright Term
Extension Act. Lessig was named one of Scientific American’s Top 50 Vision-
aries, for arguing “against interpretations of copyright that could stifle
innovation and discourse online.” He is the author of The Future of
Ideas and Code and Other Laws of Cyberspace. He also chairs the Creative
Commons project. Professor Lessig is a board member of the Electronic
Frontier Foundation, a board member of the Center for the Public Domain,
and a commission member of the Penn National Commission on Society,
Culture, and Community at the University of Pennsylvania. Professor
Lessig earned a BA in economics and a BS in management from the
University of Pennsylvania, an MA in philosophy from Cambridge, and a
JD from Yale.

Jan Ljungberg is associate professor in informatics, School of Economics
and Commercial Law, Göteborg University. He is also leader of the knowl-
edge management group at the Viktoria Institute. Ljungberg has written
several papers on free and open source software communities and is mainly
concerned with organizational and social aspects of F/OSS as well as the
impact of F/OSS movements on commercial and public organizations and
the network society at large.

Jason Matusow is manager of the Shared Source Initiative at Micro-soft
Corp. The Shared Source Initiative has established the companywide policy
and framework regarding the sharing of Microsoft’s most valuable
intellectual property assets including Windows®, Windows CE.NET®,
and .NET® technologies. Matusow also consults with governments, cor-
porations, academics, and analysts globally on the business implications
of software intellectual property issues.

David McGowan is an associate professor of law and Julius E. Davis Pro-
fessor of Law (2003–2004) at the University of Minnesota Law School. He
studies and writes about the legal regulation of technology. In addition to
the legal and economic aspects of open source development, he has written
on topics such as the regulation of expressive uses of code, optimal rules
for governing Website access, the foundations of copyright policy, and the
role of competition policy in network markets. Before joining the UMLS
faculty, he practiced law in San Francisco.

Audris Mockus conducts research of complex dynamic systems by design-
ing data mining methods to summarize and augment the system

List of Contributors 519

evolution data, interactive visualization techniques to inspect, present, and
control the systems, and statistical models and optimization techniques to
understand the systems. He received BS and MS in applied mathematics
from Moscow Institute of Physics and Technology in 1988 and in 1994, he
received PhD in statistics from Carnegie Mellon University. He works at
the Software Technology Research Department of Avaya Labs. Previously,
he worked at the Software Production Research Department of Bell Labs.

Peter G. Neumann has doctorates from Harvard and Darmstadt. After
10 years at Bell Labs in Murray Hill, New Jersey in the 1960s, he has been
in SRI’s computer science lab since September 1971. He is concerned
with computer systems and networks, trustworthiness/dependability, high
assurance, security, reliability, survivability, safety, and many risks-related
issues such as voting-system integrity, crypto policy, social implications,
and human needs including privacy. Neumann moderates the Association
for Computing Machinery (ACM) Risks Forum, edits Communication of the
ACM’s monthly Inside Risks column, chairs the ACM Committee on Com-
puters and Public Policy, and chairs the National Committee for Voting
Integrity (http://www.epic.org/privacy/voting). He cofounded People For
Internet Responsibility (PFIR, http://www.PFIR.org) and cofounded the
Union for Representative International Internet Cooperation and Analysis
(URIICA, http://www.URIICA.org). His book, Computer-Related Risks, is in
its fifth printing. He is fellow of the ACM, IEEE, and AAAS, and is also an
SRI Fellow. The 2002 recipient of the National Computer System Security
Award, he is a member of the U.S. General Accounting Office Executive
Council on Information Management and Technology, and the California
Office of Privacy Protection advisory council. He has taught at Stanford,
University of California, Berkeley, and the University of Maryland.

Siobhán O’Mahony is assistant professor at the Harvard Business School.
She holds a PhD from Stanford University in management science and
engineering, specializing in organizational studies. Her research, based on
interviews and observations of more than 80 leaders in the free soft-
ware and open source software movements, examined how community-
managed software projects designed governance structures while negotiat-
ing new rules for collaboration with firms. O’Mahony’s future research will
examine how firms manage their collaboration with community-managed
projects and how, when contributing to shared platforms, firms articulate
what will be shared and what will be unique to the firm.

Tim O’Reilly is founder and CEO of O’Reilly Media, thought by many to
the best computer book publisher in the world. In addition to publishing
pioneering books like Ed Krol’s The Whole Internet User’s Guide and Catalog

520 List of Contributors

(selected by the New York Public Library as one of the most significant
books of the twentieth century), O’Reilly has also been a pioneer in the
popularization of the Internet. O’Reilly’s Global Network Navigator site
(GNN, which was sold to America Online in September 1995) was the first
Web portal and the first true commercial site on the World Wide Web.
O’Reilly continues to pioneer new content development on the Web via
its O’Reilly Network affiliate, which also manages sites such as Perl.com
and XML.com. O’Reilly’s conference arm hosts the popular Perl Confer-
ence, the Open Source Software Convention, and the O’Reilly Emerging
Technology Conference. Tim has been an activist for Internet standards
and for open source software. He has led successful public relations cam-
paigns on behalf of key Internet technologies, helping to block Microsoft’s
1996 limits on TCP/IP in NT Workstation, organizing the “summit” of key
free software leaders where the term “open source” was first widely agreed
upon, and, most recently, organizing a series of protests against frivolous
software patents. Tim received Infoworld’s Industry Achievement Award in
1998 for his advocacy on behalf of the open source community.

David Lorge Parnas is professor of software engineering, SFI fellow and
director of the Software Quality Research Laboratory at the University of
Limerick and on leave from McMaster University in Canada. He received
his BS MS and PhD degrees in electrical engineering from Carnegie Mellon
University and honorary doctorates from the ETH is Zurich and the
Catholic University of Louvain. Dr. Parnas has been contributing to soft-
ware engineering literature for more than 30 years. He is a fellow of the
Royal Society of Canada, the Canadian Academy of Engineering, and the
Association for Computing Machinery (ACM) and is licensed as a profes-
sional engineer in Ontario.

Jason Robbins founded the GEF and ArgoUML open source projects as part
of his research on the usability and adoption of software engineering tools.
From 1999 until 2003, he played a key role in the development of Collab-
Net’s SourceCast(tm) collaborative development environment. Dr. Robbins is
currently a lecturer at the School of Information and Computer Science at
the University of California, Irvine, and a leader in the Tigris.org software
development community. His latest project is ReadySET, an open source set
of ready-to-use templates for software engineering project documents.

Srdjan Rusovan was born in Belgrade in 1968. He graduated from the
Faculty of Electrical Engineering, University of Belgrade, and worked with
Alcatel Telecom Yugoslavia as an electrical engineer for the past several
years. Srdjan holds an MSc in Computer Science from McMaster Univer-
sity, Ontario. His master’s thesis was Software Inspection of the Linux

List of Contributors 521

Implementation of TCP/IP Networking Protocols (Address Resolution Protocol,
Point to Point Protocol) Using Advanced Software Inspection Techniques. Srdjan
is employed as a software analyst in Alcatel Transport Automation Solu-
tions in Toronto.

Clay Shirky divides his time between consulting, teaching, and writing
on the social and economic effects of Internet technologies. He is an
adjunct professor in NYU’s graduate interactive telecommunications
program (ITP). Prior to his appointment at NYU, Mr. Shirky was a partner
at the international investment firm The Accelerator Group in 1999–2001.
The Accelerator Group was focused on early stage firms, and Mr. Shirky’s
role was technological due diligence and product strategy. He was the
original professor of new media in the media studies department at Hunter
College, where he created the department’s first undergraduate and
graduate offerings in new media and helped design the current MFA in
integrated media arts program. Mr. Shirky has written extensively about
the Internet since 1996. Over the years, he has had regular columns in
Business 2.0 FEED, OpenP2P.com and ACM Net Worker, and his writings
have appeared in the New York Times, the Wall Street Journal, the Harvard
Business Review, Wired, Release 1.0, Computerworld, and IEEE Computer. He
has been interviewed by Slashdot, Red Herring, Media Life, and the Econo-
mist’s Ebusiness Forum. He has written about biotechnology in his “After
Darwin” column in FEED magazine and serves as a technical reviewer for
O’Reilly’s bioinformatics series. He helps program the “Biological Models
of Computation” track for O’Reilly’s emerging technology conferences. Mr.
Shirky frequently speaks on emerging technologies at a variety of forums
and organizations, including PC Forum, the Internet Society, the Depart-
ment of Defense, the BBC, the American Museum of the Moving Image,
the Highlands Forum, the Economist Group, Storewidth, the World Tech-
nology Network, and several O’Reilly conferences on peer-to-peer, open
source, and emerging technology.

Anna Maria Szczepanska is a PhD student in sociology at Göteborg
University and part of the knowledge management group at the Viktoria
Institute. She has written several papers that focus on aspects within the
open source and free software movement such as cultural politics and
collective identity. Her forthcoming thesis deals with questions on how
to understand the open source/free software phenomenon from a social
movement perspective.

Jean Tirole is scientific director of the Institut d’Economie Industrielle,
University of Social Sciences, Toulouse. He is also affiliated with CERAS,

522 List of Contributors

Paris, and MIT, where he holds a visiting position. Before moving to
Toulouse in 1991, he was professor of economics at MIT. In 1998, he was
president of the Econometric Society, whose executive committee he has
served on since 1993. He is president-elect of the European Economic Asso-
ciation. Tirole received a Doctorate Honoris Causa from the Free Univer-
sity in Brussels in 1989, the Yrjö Jahnsson prize of the European Economic
Association in 1993, and the Public Utility Research Center Distinguished
Service Award (University of Florida) in 1997. He is a foreign honorary
member of the American Academy of Arts and Sciences (1993) and of the
American Economic Association (1993). He has also been a Sloan Fellow
(1985) and a Guggenheim Fellow (1988). Tirole has published over a
hundred professional articles in economics and finance, as well as six
books. He received his PhD in economics from MIT in 1981, engineering
degrees from Ecole Polytechnique, Paris (1976) and from Ecole Nationale
des Ponts et Chaussées, Paris (1978) and a “Doctorat de 3ème cycle” in
decision mathematics from the University Paris IX (1978).

Eric von Hippel is professor and head of the Innovation and Entrepre-
neurship Group at the MIT Sloan School of Management. His research
examines the sources and economics of innovation, with a particular focus
on the significant role played by users in the innovation development
process. His most recent work explores how innovating users collaborate
in voluntary innovation development groups as in the case of open source
software development projects.

Charles B. Weinstock is a senior member of the technical staff at the
Software Engineering Institute in Pittsburgh in the Performance Critical
Systems initiative. He has a PhD in computer science, an MBA, and a BS
in mathematics, all from Carnegie Mellon University. Dr. Weinstock’s
current interests are in the area of dependable computing.

Robert G. Wolf is a consultant with The Boston Consulting Group, where
he is part of the Strategy practice initiative and currently leads BCG’s net-
works practice. Since joining BCG in 1985, Wolf has led many projects
focused on innovation, including emerging technologies, knowledge
management, multimedia training, collaborative learning, intellectual
property, and motivation. In his consulting practice, he has applied his
thinking to businesses in many industries. He has a BA in economics and
history from Duke University and PhD in economics from the University
of Pennsylvania. Prior to joining BCG, he held faculty positions at Boston
University and Tufts University.

List of Contributors 523

Academic development, 335–336

Acrobat Reader, 334

Adams, Rick, 470

Adbusting, 439

Address Resolution Protocol (ARP),

113–120

Adhocracy, 229

Adobe Systems, 334

Agent-based modeling, 297, 304, 323

Agnostos, 293

AGNULA project, 450

Allchin, Jim, 441, 465

AllCommerce, 145, 147

Allman, Eric, 62

Allocating resources, 297–323

agent-based modeling, 297, 304, 323

C-mode/I-mode production, 306

commercial software, 306–307, 322

effort endowments, 310–312, 321

microbehaviors, 320

modularity, 308–309, 311

motivation, 304–305

problem choice, 309

release policies, 314, 316–318, 320–321

reputational rewards, 306–309, 314,

322

simulation, 309–315

social utility measurements, 315–317

user needs, 321–322

Alpha testing, 132

Altruism, 48

Alumni effect, 59

Amazon.com, 293, 466, 472–473, 476

American Airlines, 477

AMOS project, 450

Anders, Mark, 471

Anderson theorem, 128

Ant, 257–258

Apache Group (AG), 171–172

Apache server, 99, 171–188, 293, 469,

475

code ownership, 181–182, 186–187

and commercial projects, 179–181,

183–184

Concurrent Version Control Archive

(CVS), 167–168, 175

coordination mechanisms, 204

core developers, 55, 149, 172,

177–179, 186–187, 206

defects, 182–184, 187–188

developer contributions, 145, 147,

155–156, 176–181, 403

development process, 171–176

distribution, 164

and IBM, 333

leadership, 65, 157

licensing, 367, 402

mailing list, 167, 172–173

and Mozilla, 192, 195–200, 207–208

Problem Reporting Database

(BUGDB), 168, 172–173, 176, 181,

184, 204

Index

526 Index

Apache server (cont.)

releases, 175

reputational benefits, 61–62

resolution interval, 184–185

robustness, 288

testing, 174, 187–188

Usenet newsgroups, 173

as user innovation network, 267–268

Apache Software Foundation, 398,

402–404

Apple Computer, 333

ArgoUML, 259

ARP cache, 113–114

ARP packet, 113–115

Art of Computer Programming, The, 426

ASP.Net, 471

AT&T, 51, 469

@LIS programme, 455

ATMs, 135

Auction equivalence, 128–130

Autoconf, 257

Automake, 257

Aviation industry, 335–336

B News, 470

Babbage, Charles, 477

Backward compatibility, 70

Baker, Mitchell, 189, 209

Ballmer, Steve, 441

Barnesandnoble.com, 473

“Bazaar” metaphor, 86–87, 94–95, 303,

317, 442–443

BCG/OSDN survey, 25, 31

Behlendoft, Brian, 61–62, 69, 471

Benkler, Yochai, 451

Berkeley Conundrum, 101

Berkeley Internet Name Daemon

(BIND), 467, 469

Berkeley System Distribution (BSD),

230, 280, 367. See also FreeBSD

Berners-Lee, Tim, 475

Beta testing, 132, 134, 138

BIND, 467, 469

Bioelectric field mapping, 428–429

Black box, F/OSS as, 151–153

Blackboard, 295

Bloaty code, 182–183

Bostic, Keith, 62

Boston Consulting Group, 25

Bouquet du Libre Prime Minister

agency action, 448

Boyle, Robert, 418–420

Brooks, Fred, 109–110, 120, 235

Brooks Law, 95, 109–110

BSD, 230, 280, 367. See also FreeBSD

Bug. See Debugging

Bugzilla, 168–169, 190–191, 202, 254

Build systems, 237, 257–259

Burney, Derek, 92

Business models, OSS, 157, 279–296

advantages/disadvantages, 287–289

community as producer, 280–282

competition, 294–295

costs and performance, 293

distributors, 282–283

GPL, 284

marketing, 295

non-GPL, 283

profit potential, 289–295

third-party service provider, 285–286

C language, 215

Cache, ARP, 113–114

Caldera/SCO, 279, 282, 294

Career concern incentive, 58

Carrasco-Munoz, Jordi, 455

CASE tools, 245–246

Castor, 259

“Cathedral and bazaar” metaphor,

86–87, 94–95, 303, 317, 442–443

Cathedral and Bazaar, The, 317, 484

Checkstyle, 261

Chief Programmer Team (CPT), 96

Christensen, Clayton, 466–467, 469

Cisco, 467

Citation indexing, 422, 426–427

Index 527

Citibank, 127

Closed source software (CSS), 358. See

also Commercial software

Code. See Source code

Code and Other Laws of Cyberspace,

474

Code generation tools, 259–260

Code sharing, 336–338, 469, 478–479

commercial software, 66–69, 336–337

history, 50–51

licensing, 342

network-enabled collaboration, 469

Shared Source Initiative, 329–331,

338–344

user innovation networks, 273–274

Codestriker, 261

Collab.Net, 69, 96, 333, 471

Collaborative development

environment (CDE), 248, 262–264

Collaborative writing, 484–485

Collective identity, 432

Commercial software, 331–335

allocating resources, 306–307, 322

and Apache server, 179–181, 183–184

code escrow, 154

code review, 252

code sharing, 66–69, 336–337

and commoditization, 466–467

competition, 295

coordination mechanisms, 203–204

derived product, 283

development process, 157, 170–171

in Europe, 447

and F/OSS, 66–69, 104, 123–124,

127–140, 146, 150–156, 331–335

functionality, 250–251

LGPL, 366–367

motivation, 59–61, 66–69, 248

and Mozilla browser, 196, 198

releases, 251

requirements, 123–124, 149, 247

reuse, 250

service, 285–286

standardization, 249, 465

testing, 132, 136, 149, 156

upgrades, 152

Commoditization, software, 463–468

Commons, 352–353, 356, 358–359,

456

Community-based intrinsic motivation,

5–6, 13–14, 16, 41–42

Compaq, 462

Compatibility, 70, 99–100

Compiler, 485–486

Component acquisition, 150–151

Computational science, 427–430

Computer-Aided Software Engineering

(CASE) tools, 245–246

Concurrent Versions System (CVS),

252–253

Apache server, 167–168, 175

GNOME project, 214–215

Conectiva, 294

Connectivity, 27

Contract law, 367–373

Contributor distribution, 54–56

Cooperatives, 396

Copyleft, 362

Copyright, 351–352, 372–373. See also

Intellectual property; Licensing

Apache Software Foundation, 404

default rule, 367–368

derivative works, 374–382

Digital Millennium Copyright Act,

354–355

GPL, 362–363

and science, 424

television, 356–357

Core developers, 149, 172, 177–179,

186–187, 200–201, 203

COTS software. See Commercial

software

CPAN (Comprehensive Perl Archive

Network), 475

“Cracker,” 85

Creative Commons, 488

528 Index

Creativity

and effort, 16–17

and flow, 4–5, 11–12

intrinsic motivation, 5

and payment, 17–18

CruiseControl, 258

CSS algorithm, 355

Culture, F/OSS, 104–106

Customer applicability, 289–293

Customer support, 185, 188, 203,

283

Customizability, software, 476–478

CVS. See Concurrent Versions System

(CVS)

CyberPatrol, 372–373

Cyberspace, 354

DARPA CHATS program, 125

Debian Free Software Guidelines, 52

Debian project, 105–106, 401–402

Debugging, 84. See also Security

correlated bugs, 135

defect density, 182–184, 197–198,

202, 205–206

Evolution mailer, 221

integration, 237–238

Linux, 111

parallel, 240–241

proprietary vs. F/OSS, 140

reliability growth theory, 130–131

shared code, 341–342

time-to-market issues, 133–134,

136–137

vendor response, 136–138

deCSS, 355

Defense Advanced Research Projects

Agency (DARPA), 125, 397–398

de Icaza, Miguel, 218, 219, 221

Dell, Michael, 462

Delta, 170

Demigod, 438

Demographics, developer, 8–9, 24–25,

30–32

Dependency analysis, 230–231

Derivative works, 283, 364–365,

374–382

Design and Implementation of the 4.4BSD

Operating System, The, 230

Design process

commercial, 170–171

OSS, 147–148

tools, 259

Deutsch, L. Peter, 62

Development model, commercial,

170–171

Development model, OSS, 148–150,

155–158, 163–164

Dia, 259

di Cosmo, Roberto, 452

Digital, 462

Digital Millennium Copyright Act,

354–355

Discourse analysis, 432–446

collective identity, 432

gift culture, 443–444

hacker community, 433–436

leadership, 436–438

role of enemy, 439–442

Documentation, 116–120, 153, 343

Domain name registration, 467, 469

Domain-specific reuse, 150

Doxygen, 260

Driver development kit (DDK), 334

Duke Nukem, 376–378

Dun and Bradstreet, 378

DVDs, 355

Dynamic languages, 476–477

Eazel, 217

eBay, 472

Economic motivation. See Extrinsic

motivation

Economic perspectives, FOSS, 48–73

commercial software companies,

66–69, 71–72

communist/utopian, 85–87

Index 529

compatibility/upgrades, 70

competition, 70

free-rider problem, 67

licensing, 51–54, 69, 71

opportunity cost, 57–58

research and development, 49–50

short-term/delayed rewards, 59–62

signaling incentive, 58–61

user groups, 48–49

Ego gratification incentive, 58

EGOVOS conferences, 455

Enhydra, 145–146

Enjoyment-based intrinsic motivation,

4–5, 12–13, 18

ERP systems, 102

European Commission, 447–448,

454

development initiatives, 455

EU resolution of 1999, 453

intellectual property rules, 450

IST program, 448–450

European Working Group on Libre

Software, 448–449

Evaluation. See also Security; Testing

bazaar model, 95

business strategies, 101

code review, 84, 89, 97, 146, 236,

251–252, 263, 445

design and documentation, 116–120

developer talent and leadership,

96–97, 105

forking, 88, 99–100

legal issues, 103

Linux, 107–121

modularity, 95–96, 98–99, 109–110

programmer performance, 60, 83

project initiation, 97–98

reliability and security, 84–85, 116,

130–131, 134

secondary development tasks, 99

user-friendliness, 103–104

vertical domains, 102

Evolution mailer, 218, 220–224

Extended Change Management System

(ECMS), 169–170

Extrinsic motivation, 6–7, 12–14, 16

FAQ-O-Matic, 256

FAQs, 256

Feature creep, 134, 250

Female developers, 31

Fermat, Pierre de, 350–351

File formats, 428–429

Flaming, 444–445

Flawfinder, 261

Flextronix, 468

FLOSS developer survey, 23–43

behavior, 27–28

demographics, 24–25, 30–32

monetary measures, 23–24

motivation, 26–27, 32–35, 38–42

organizational structure, 27–28, 35–37

sampling, 29–30

surveys, 24–26

FLOSS source code scan, 42

Flow state, 4–5, 11–12

Forking, 53, 58, 65, 88, 99–100

FormGen, 376–378

FreeBSD, 227–243, 463

coding, 235–236

development releases, 239–240

integration activities, 231–232,

234–235

maintainers, 232

motivation, 233–234

organization, 228–230

production releases, 241–242

reviewing, 236–237

SMP project, 234

stabilization, 241–242

FreeBSD Foundation, 399

Free Desktop group, 100

Free software, 89–90, 101, 110–111,

437

GNOME, 218

licensing, 478–479

530 Index

Free Software Foundation (FSF), 51,

362, 372, 375, 397–400, 437

Free speech, 357

Free Standards Group, 100, 399

Freshmeat.net, 96–97

Friedl, Jeffrey, 476

FUD, 441

Fuzz Papers, 84

General Public License (GPL), 51–54,

71, 108, 362–366

and contracts, 367–373

copyright issues, 362–366

criticisms of, 381–383

derivative works, 282, 374–382

and intellectual property rights,

373–381, 441

LGPL, 366–367, 379

and non-GPL licenses, 284

and Web-based application vendors,

466

Gift culture, 103, 443–444

Gift-exchange systems, 420

GIMP, 148

Glass, Robert, 483

GNOME Foundation, 219–220, 399,

404–406

GNOME project, 103, 211–224

architecture, 213–214

and commercial companies, 212, 217

committees, 220

CVS repository, 214–215

Evolution mailer, 218, 220–224

internationalization, 217

modules, 214–217

programmers, 215

release coordination, 405

requirements analysis, 217–219

GNU C compiler (gcc), 470

GNUe project, 102

GNU software, 51. See also General

Public License (GPL); Linux

Google, 293, 463, 466

Gosling, James, 318, 438

GotDotNet, 343

Government development, 335–336

Government off-the-shelf (GOTS)

software, 150, 154–155

GPL. See General Public License (GPL)

Grace Consulting, 378

Gray, Jim, 429–430

Grepping, 425

Gump, 258

Guthrie, Scott, 471

Hacker community, 6, 14, 393–394, 410

cathedral and bazaar metaphor,

442–443

gift culture, 443–444

Jargon File, 434–436

leadership, 436–438

and Microsoft, 439–442

socialization, 433–434

Halloween documents, 436, 440

Helix, 334

Helixcode, 219, 221

Hewlett-Packard, 68–69

Hibernate, 259

Hierarchy, F/OSS, 87–89

High-profile nichers, 293

History of F/OSS, 50–54, 90–92

Hobbes, Thomas, 418–419

Hobbes measure, 41

Hofstadter, Douglas, 483

“Hold-up planétaire, un,” 452

“Homesteading the Noosphere,” 307

Honscheid, Jurgen, 268

Horgan, Mike, 268

HOWTOs, 256

HTML, 475

IANA, 398

IBM, 90, 441

and Apache, 333

debugging, 133

introduction of PCs, 461–462

Index 531

ICCB-DARPA, 398

iCraveTV, 356–357

IDA program, 454

Ideas, nature of, 353–354

Identity, 5–6, 14, 432

IEEE Symposium on Security and

Privacy, 125

Incentive. See Motivation

Incorporation, 393

Information society, 431

Information technology (IT), 431–432

Infoware, 466

Innovator’s Dilemma, The, 466

Integration, software, 27, 227–228,

230–231. See also FreeBSD

incremental, 234–235

testing, 230, 237–238, 240–241

Intel, 462, 467

Intellectual property, 336–337, 344,

351, 373–381. See also Copyright;

Licensing

and commons, 356

and cyberspace, 354–355

Europe, 450, 455–456

GPL, 373–381, 441

and nonprofit foundations, 404, 408

and science, 419, 421–425

Interchange of Data between

Administrations (IDA) program, 454

Interdependency error, 230

Interface, module, 109–110, 116

Internationalization, 217, 254

Internet, 451, 463, 469, 475

collaboration, 468–476

TCP/IP, 112

Usenet, 470

Internet Corporation for Assigned

Names and Numbers (ICANN),

397–398

Internet Engineering Task Force (IETF),

397–398, 474

Internet operating system, 478–479

Internet Service Providers (ISPs), 467

Internet Society (ISOC), 397–398

Internet telescope, 429–430

Interoperability, 410

copyright issues, 378–382

Linux versions, 99–100

Intrinsic motivation, 4–6

and creativity, 5

enjoyment-related, 4–5, 12–13, 18

obligation/community-based, 5–6,

13–14, 16, 41–42

IP address, 112

Issue-tracking tools, 249, 254

IST advisory group (ISTAG), 448

IT market, 431–432

Jabber Foundation, 399

Jannson, Eddy L. O., 372–373

Jargon File, 434–436

Jargon Lexicon, 434–435

Java, 404

JavaScript: The Definitive Guide, 472–473

JCSC, 261

JDepend, 261

Jefferson, Thomas, 353–354, 356

Johnson, Chris, 428–429

Joy, William, 62, 469

JUnit, 260–261

JUnitDoclet, 260

Kapor, Mitch, 474

Kasichainula, Manoj, 209

Kay, Alan, 479

KBST report, 448

KDE League, 399

KLOCA, 182

Knuth, Donald, 426

KOffice, 280

Kolmogorov-Smirnov test, 178

Kuhn, Thomas, 461, 479

Kurzweil, Ray, 463

Languages, dynamic, 476–477

LClint, 261

532 Index

Leadership, 52, 59, 63–65, 105, 157

Apache, 65, 157

and community support, 294

“movement intellectuals,” 436–438

Lesser General Public License (LGPL),

366–367, 379

Lessig, Larry, 474

Leviathan and the Air Pump, 418

LGPL, 366–367, 379

Liability, 368–369, 377, 379. See also

Licensing

Apache, 402

Debian, 401

and nonprofit foundations, 395–396,

408

Libre software, 447–459

development and social inclusion,

454–455

end-user control, 451–452

and European Commission, 447–448,

454

government policies, 453

intellectual property, 450, 455–456

IST program funding, 448–450

licensing, 450–451

and proprietary monopoly, 452–453

security, 452

usage, 453–454

Licensing, 154, 361–367, 469. See also

Copyright; General Public License

(GPL)

Apache, 367, 402

BSD, 367

commercial/noncommercial software,

332–335

and contract law, 367–373

copyleft, 362

Creative Commons, 488

Debian Free Software Guidelines, 52

derivative works, 364–365, 374–382

hijacking, 71

intellectual property, 373–381

international, 340

LGPL, 366–367, 379

liability, 368–369, 377, 379, 401–402

library material, 366–367

libre software, 450–451

Microsoft, 338, 342

MIT, 367

Netscape/Mozilla, 69

non-GPL, 283–284

Open Source Definition, 52–53, 61,

361–362, 367, 479

shared code, 342

LICKS project, 42

Lifespan, F/OSS, 70–71

Lint command, 261

Linux, 47, 63–64, 68, 107–121, 164

ARP module, 115–120

code quality, 97

custom distributions, 468

design and documentation, 116–120

distribution, 282, 294

foundations, 406

and Google, 293, 463, 466

history of, 108

inception, 156

and Microsoft, 147, 295

Net initiative, 280

and Red Hat, 333, 465, 468

reliability/robustness, 136, 288

and SCO Group, 103

stable/development kernel, 111–112

support, 288

and Unix, 108

version proliferation, 99–100,

288–289

VM subproject, 98

and Web-based application vendors,

466

Linux Desktop Consortium, 100

Linux International, 399

Linux Professional Institute, 398

Linux Standard Base and United Linux,

100

Local area network, 112

Index 533

Locke, John, 375

Low-profile nichers, 292

McConnell, Steve, 227

McCool, Rob, 171, 267–268

MacCVS, 252

Mailing lists, 255

Make command, 257

Makefile, 257

MapQuest, 473–474

Maps.msn.com, 473–474

Maps.yahoo.com, 473–474

Mastering Regular Expressions, 476

Mauss, Marcel, 443

Maven, 258

Mechanical Turk, 477

Merges, Robert, 370

Merton, Robert, 417, 422–423

Micro Star, 376–378

Microsoft, 478

ASP.Net, 471

and BSD, 280, 283

code delivery, 343

criticisms of OSS, 441

DDK, 334

debugging, 137

and Europe, 452

and GPL, 382–383

and hacker community, 439–442

Halloween documents, 436, 440

and IBM, 462

Internet telescope, 429–430

licensing policy, 338, 342

and Linux, 147, 295

MVP initiative, 101

and Netscape, 475

Open Value policy, 101

security, 127

Shared Source Initiative, 329–331,

338–344

and standardization, 464–465, 477

Windows, 136, 333, 336

Microsystems, Inc., 372–373

MIT license, 367

Modeling, agent-based, 297

Modification request (MR), 167, 170,

214–215

Modularity, 27, 62–63, 95–96, 469

difficulties of, 98–99

GNOME project, 214–217

interfaces, 109–110, 116

and motivation, 308–309, 311

Mozilla browser, 205

and participation, 475

Money, 425–426

Motivation, 3–7, 12–16, 248, 443.

See also Reputational rewards

allocating resources, 304–305

assumed, 26–27

career/monetary, 39–42, 58

commercial software, 59–61, 66–69,

248

determinants of effort, 16–18

economic theory, 56–59

extrinsic, 6–7, 12–14, 16

FLOSS developer survey, 26–27, 32–35,

38–42

FreeBSD, 233–234

and income, 6, 9–11, 15–17, 39–40

innovation, 305–306

intrinsic, 4–6, 12–14, 16, 18, 41–42

and science, 415–416, 419

short-term/delayed rewards, 59–62

signaling incentive, 58–61, 66, 306

social/community, 41–42

technical professions, 394

user needs, 6–7, 12, 16, 270–273

Movement culture, 432

Mozilla browser, 68–69, 148, 188–203

and Apache, 192, 195–200, 207–208

Bugzilla, 168–169, 190–191, 202,

254

code ownership, 196–197, 201

and commercial projects, 196, 198

coordination mechanisms, 204–205

data sources, 168–169

534 Index

Mozilla browser (cont.)

defect density, 197–198, 202–203,

205–206

developer contributions, 192–196, 202

development process, 189–192

modularity, 205

problem reporting, 190–191, 195–196

resolution interval, 198–200

roles and responsibilities, 190–191

testing, 191–192

Mozilla.org toolset, 248

MSDN Code Center Premium, 343

MSN, 473–474

Murdock, Ian, 468

Mythical Man Month, The, 109, 235

NAIS, 146

Napster, 475–476, 478

National Software Research Network

(RNTL) report, 448

NCSA, 475

Net initiative, 280

Net-negative producer (NNP), 97

Netscape, 68–69, 148, 188–189, 475.

See also Mozilla browser

Network society, 431

Network Solutions, 467

Network-enabled collaboration,

468–476

code sharing, 469

Internet, 469–470, 472–475

system architecture, 474–476

New Hackers Dictionary, The, 434

Noncommercial software, 332

Nonprofit foundations, 393–411

Apache Software Foundation (ASF),

398, 402–404

and commercial companies, 401–407

community-corporate collaboration,

407–411

efficacy, 406–407

Free Software Foundation (FSF),

397–400

GNOME Foundation, 399, 404–406

hosting concept, 397, 400

and intellectual property, 404, 408

Internet Society (ISOC), 397

and liability, 395–396, 408

models for, 396–400

Open Source Initiative (OSI), 396

and pluralism, 410–411

Software in the Public Interest,

401–402

Nora, Dominique, 452

Novell, 334

NUnit, 260

Object Constraint Language (OCL),

259

Obligation/community-based intrinsic

motivation, 5–6, 13–14, 16

Olson, Ken, 462

Online groups, 484

Open Directory Project, 475

Open science, 299–301

Open society, 349, 349–360, 360

Open Source Application Foundation,

399

Open Source Definition, 52–53, 61,

361–362, 367, 479

Open Source Initiative (OSI), 361, 396,

398, 436

OpenCourse, 295

OpenOffice, 279, 295

Opportunity cost, 57–58

ORBit, 213–214

Orbiten Survey, 42

Orbitz, 293

O’Reilly, Tim, 451, 471

Organizational structure, 27–28, 35–37,

62–67

PageRank algorithm, 473

Palladium, 451

Paradigm shift, 461–463, 479–480

Patch program, 470

Index 535

PDP-10, 435

Peer review, 84, 89, 97, 146, 251–252

FreeBSD, 236

OSS tools, 263

as social mechanism, 445

Perens, Bruce, 211, 361

Perl, 61, 293, 469, 475–477

Perl Foundation, 399

PHP, 476

PHPUnit, 260

Pierce, Charles, 309

PINs, 135

Power of Peonage, 82

President’s Information Technology

Advisory Committee (PITAC), 153

Privity of contract, 370–371

Producer/consumer dependency, 231

Professionalism, scientific, 299

Progeny Systems, 468

Programming skills

evaluation of, 83

and extrinsic motivation, 7

and intrinsic motivation, 16

Property. See also Intellectual property

and commons, 352–353

Locke’s theory of, 375

protection of, 349, 356–357, 360

Proprietary software. See Commercial

software

Proxy ARP, 115

Public domain, 352–353

Public-domain software, 52

PyCheck, 261

Python Foundation, 399

Python language, 476

PyUnit, 260

Quality assurance, 260–261

Rapid Development, 227

RapidSVN, 253

Rasterman, Carsten Haitzler, 219

RATS, 261

Raymond, Eric, 307, 317–318, 434–437,

440, 467, 473

RealNetworks, 333–334

Recipes, 487

Red Hat, 67, 104, 217

competition, 294

and Linux, 333, 468

revenues, 279

software commoditization, 465

Regression, 257

Relative product importance, 289–293

Release policies, 67–69

allocating resources, 314, 316–318,

320–321

Apache, 175

commercial software, 251

FreeBSD, 241–242

GNOME, 405

tools, 251–263

Reliability growth theory, 130–131, 134

Reputational rewards, 306–309, 314,

322. See also Motivation

Apache, 61–62

citation indexing, 422, 426

grepping, 425

science, 415–416, 420–421

Requirements analysis, 102

commercial software, 149, 247

GNOME project, 217–219

tools, 262

Research and development, 49–50

Resolution interval, 184–185

Resource allocation. See Allocating

resources

Reuse, 150, 249–250, 260, 263–264

Revenue equivalence theorem, 129

Ritchie, Dennis, 438

Robustness, 287–288

Rocket-and-wire technique, 158

Sabre reservation system, 477

Salesforce.com, 466

Scarab, 254

536 Index

Schumpeter, E. F., 465

Science, 415–430

bioelectric field mapping, 428–429

citations, 422, 426–427

and free software, 427

funding, 420–422

intellectual property, 419, 421–425

Internet telescope, 429–430

motivation, 415–416, 419

norms of, 417–418

paradigm shifts, 461

political economy of, 416

public/private, 422–423

value of, 415

Science Citation Index, 422

Scientific Computing Institute (SCI),

428

SCO Group, 103

Scripting languages, 476

Security. See also Debugging

code, 84–85, 125–126

industry structure, 137

libre software, 452

patches, 134

proprietary vs. F/OSS, 127–141, 146

stack overflow, 135

Sendmail, 53–54, 279, 474

Serial Line IP (SLIP), 470

Service providers, 285–286

SETI@home, 478

Shared Source Initiative, 329–331,

338–344

Shareware, 51–52

Shelfware, 246

Shirky, Clay, 475

Signaling, 55–56, 58–61

allocating resources, 306

closed source development, 66

Simmel, Georg, 425

Skala, Matthew, 372–373

Sky-TV, 136

SLIP (Serial Line IP), 470

Smoke test, 240

Software commoditization, 463–468

Software customizability, 476–478

Software development kit (SDK), 334

Software engineering, 149

Software Engineering Institute (SEI), 143

Software in the Public Interest, 398,

401–402

Source code. See also Code sharing;

Licensing

authorship, 35, 42, 181–182, 186–187,

196–197, 201

comments, 341

commercial/noncommercial software,

332–335

compiling, 485–486

defect density, 182–184

generation tools, 259–260

modularity, 27, 62–63, 95–96,

109–110

open/closed, 358

quality, 97, 135

release, 67–69

reuse, 150

review, 84, 89, 97, 146, 236, 251–252,

263, 445

security, 84–85, 125–126

Source Code Control System (SCCS),

169–170

SourceCast, 262

SourceForge, 7, 148, 262

SourceXchange service, 96

Spectrum Object Model, 68

Splint, 261

SquirrelMail, 293

Stack overflow, 135

Stallman, Richard M., 51, 61, 318, 352,

436–438, 442, 468, 470

Standardization, 100

and commercial software, 249, 465

and commodities, 464–465

IETF, 474

Microsoft, 464–465, 477

tools, 248–249

Index 537

Stanley, Larry, 268

Structure of Scientific Revolutions, The,

461

Stutz, David, 463, 465, 478

Subversion, 253

SubWiki, 256–257

Sun Microsystems, 217, 404, 468

Support services, 185, 188, 203

distributors, 283

documentation, 343

Linux, 288

Surveys, 24–26

SuSe, 282, 294, 468

Symmetric Multiprocessing (SMP), 234

TCP/IP, 112, 336, 469–470

Teardrop, 146

Testing, 131–133, 141–142. See also

Debugging; Evaluation

alpha/beta, 132, 134, 138

Apache server, 174, 187–188

commercial software, 132, 136, 149,

156

hostile, 136

integration, 230, 237–238, 240–241

Mozilla, 191–192

operational profile, 138

tools, 262

Thau, Robert, 171

Thompson, Ken, 97, 438

Tiemann, Michael, 62

Tigris.org, 246–247

Tinderbox, 192, 258

Tools, OSS, 148, 245–264

access to project artifacts, 247

build systems, 257–259

CDEs, 248, 248–249, 262

design and code generation, 259–260

functionality, 250–251

HOWTOs, FAQs, and Wikis, 256–257

issue-tracking, 249, 254

mailing lists and Web sites, 255–256

quality assurance, 260–261

releases, 251, 263

reuse, 249–250

Subversion, 253

version control, 252–253

Torque, 259

TortoiseCVS, 252

TortoiseSVN, 253

Torvalds, Linus, 62–64, 87, 98, 105, 108,

120, 156, 288, 294, 318, 437–438, 474

TouchGraph, 293

Trade secret law, 337

Transaction costs, 134

Transient effects, 133–134

Trusted system, 354

TurboLinux, 294

Turing, Alan, 128

TWiki, 256–257

UML, 259

UnitedLinux, 294

Unix, 51, 88, 257, 435

architecture, 464

code sharing, 469

and Linux, 108

Unix-Unix Copy Protocol (UUCP), 470

Upgrades, 70, 152, 283

Usability, 289

Usenet, 173, 470

User groups, 48–49

User innovation network, 267–276

Apache server, 267–268

conditions favoring, 270

diffusion, 274–275

free revealing, 273–274

lead users, 271–273

and manufacturers, 269–270, 276

motivation, 270–273

windsurfing, 268–269

User needs, 6–7, 12, 16

customer applicability and support,

185, 188, 203, 283, 289–293

developers as users, 157–158

high-end, 53–54, 60

538 Index

User needs (cont.)

libre software, 451–452

motivation, 6–7, 12, 16, 230–233

and participation, 475, 477

resource allocation model, 321–322

user-friendliness, 103–104

UUCP (Unix-Unix Copy Protocol), 470

UUnet, 470

Value, 425–426

van Rossom, Guido, 438

vDoclet, 260

Version control, 252–253

Apache server, 167–168, 175

GNOME project, 214–215

Version proliferation, 99–100, 288–289

Vertical domains, 102

Vietnam, 455

ViewCVS, 252

Vixie, Paul, 62

von Hippel, Eric, 487

Wall, Larry, 62, 64, 438, 470

Waugh, Jeff, 220

Web sites, OSS, 255–256

WebCT, 295

WebSphere, 333

Whine feature, 254

White box, F/OSS as, 153

WIDI survey, 30

Wiki, 256–257

Wikipedia, 475, 486

Wiles, Andrew, 350–351

WinCVS, 252

Windows, 136, 333, 336

Windsurfing, 268–269

Wings3D, 292

World Wide Web Consortium (W3C),

397–398

Writing, collaborative, 484–485

X11, 213

XDoclet, 260

Xemacs project, 71

XenoFarm, 258

Ximian, 217, 219, 221, 280

XML, 258

Yahoo, 293, 473, 475–476

Young, Bob, 465, 468

	FM0262062461jac.tif
	FM0-262-06246-1.pdf

